分析 (1)利用an=Sn-Sn-1化簡可知an=2an-1(n≥2),進而可知數列{an}是首項、公比均為2的等比數列,計算即得結論;
(2)通過(1)裂項可知bn=$\frac{1}{{2}^{n}+1}$-$\frac{1}{{2}^{n+1}+1}$,進而并項相加即得結論.
解答 解:(1)∵3Sn+4an-1=5an+3Sn-1(n≥2),
∴3an+4an-1=5an,即an=2an-1(n≥2),
又∵a1=2,
∴數列{an}是首項、公比均為2的等比數列,
于是其通項公式an=2n;
(2)由(1)可知bn=$\frac{{a}_{n}}{{(a}_{n}+1){(a}_{n+1}+1)}$=$\frac{{2}^{n}}{({2}^{n}+1)({2}^{n+1}+1)}$=$\frac{1}{{2}^{n}+1}$-$\frac{1}{{2}^{n+1}+1}$,
則Tn=$\frac{1}{2+1}$-$\frac{1}{{2}^{2}+1}$+$\frac{1}{{2}^{2}+1}$-$\frac{1}{{2}^{3}+1}$+…+$\frac{1}{{2}^{n}+1}$-$\frac{1}{{2}^{n+1}+1}$=$\frac{1}{3}$-$\frac{1}{{2}^{n+1}+1}$.
點評 本題考查數列的通項及前n項和,考查裂項相消法,注意解題方法的積累,屬于中檔題.
科目:高中數學 來源: 題型:選擇題
A. | 充分而不必要條件 | B. | 必要而不充分條件 | ||
C. | 充要條件 | D. | 既不充分又不必要條件 |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $\frac{1}{{e}^{2}}$<x1x2<$\frac{1}{e}$ | B. | $\frac{1}{{e}^{2}}$<x1x2<1 | C. | $\frac{1}{e}$<x1x2<1 | D. | e<x1x2<e2 |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 1 | B. | $\sqrt{2}$ | C. | 2 | D. | 4 |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | $\frac{\sqrt{3}}{2}$ | C. | -$\frac{1}{2}$ | D. | -$\frac{\sqrt{3}}{2}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com