分析 由已知條件條件數(shù)列{an}為1,-1,1,1-1,…,由此能求出數(shù)列{an}的通項(xiàng)公式.
解答 解:∵Sn+$\frac{1}{{S}_{n}}$=an,則Sn≠0,
∴Sn2+1=anSn,
∴Sn-12+1=an-1Sn-1,
∴Sn2-Sn-12=anSn-an-1Sn-1,
∴(Sn-Sn-1)(Sn+Sn-1)=anSn-an-1Sn-1,
∴an(Sn+Sn-1)=anSn-an-1Sn-1,
∴anSn+anSn-1=anSn-an-1Sn-1,
∴anSn-1=-an-1Sn-1,
∴an=-an-1,
∴a2=-a1=-1,
∴數(shù)列{an}為1,-1,1,1,-1,…
∴an=(-1)n+1,
故答案為:(-1)n+1
點(diǎn)評(píng) 本題考查數(shù)列的通項(xiàng)公式的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意構(gòu)造法的合理運(yùn)用.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 0個(gè) | B. | 1個(gè) | C. | 2個(gè) | D. | 3個(gè) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com