5.若(x2$+\frac{1}{x}$)n的展開(kāi)式中二項(xiàng)式系數(shù)之和為64,則n等于6.

分析 由二項(xiàng)式系數(shù)的性質(zhì)可知,二項(xiàng)式系數(shù)為之和Cn0+Cn1+Cn2+…Cnn=2n,結(jié)合已知可求n.

解答 解:由二項(xiàng)式系數(shù)的性質(zhì)可得,Cn0+Cn1+Cn2+…Cnn=2n=64
∴n=6
故答案為:6

點(diǎn)評(píng) 本題主要考查了二項(xiàng)式系數(shù)的性質(zhì),二項(xiàng)式系數(shù)為之和Cn0+Cn1+Cn2+…Cnn=2n的應(yīng)用,屬于基礎(chǔ)性試題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.已知{an}為等比數(shù)列,且${a_1}{a_{13}}=\frac{π}{6}$,則tan(a2a12)的值為( 。
A.$\frac{{\sqrt{3}}}{3}$B.-$\sqrt{3}$C.$±\sqrt{3}$D.$-\frac{{\sqrt{3}}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.已知M點(diǎn)的極坐標(biāo)為$(-2,-\frac{π}{6})$,則M點(diǎn)關(guān)于直線$θ=\frac{π}{2}$的對(duì)稱(chēng)點(diǎn)坐標(biāo)為( 。
A.$(2,\frac{π}{6})$B.$(2,-\frac{π}{6})$C.$(-2,\frac{π}{6})$D.$(-2,\frac{11π}{6})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.直角坐標(biāo)系中,已知?jiǎng)狱c(diǎn)P(x,y)到定點(diǎn)F(0,2)的距離與它到y(tǒng)=-1距離之差為1,
(1)求點(diǎn)P的軌跡C
(2)點(diǎn)A(3,1),P在曲線C上,求|PA|+|PF|的最小值,并求此時(shí)點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.對(duì)于銳角α,若$tanα=\frac{3}{4}$,則cos2α+2sin2α=( 。
A.$\frac{16}{25}$B.$\frac{48}{25}$C.1D.$\frac{64}{25}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.${∫}_{-1}^{1}$(3x2+2x+1)dx=4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.在△ABC中,角A,B,C所對(duì)邊分別為a,b,c,若a,b,c成等比數(shù)列,且A=60°,則$\frac{bsinB}{c}$(  )
A.$\frac{\sqrt{6}+\sqrt{2}}{4}$B.$\frac{1}{2}$C.$\frac{\sqrt{3}}{2}$D.$\frac{\sqrt{6}-\sqrt{2}}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.在△ABC中,a,b,c分別為角A,B,C的對(duì)邊,b=2,a=1,cosC=$\frac{3}{4}$.
(1)求c的值;
(2)求sinA的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.已知等比數(shù)列{an}的前n項(xiàng)和為Sn,若Sn=3n+t,則a2=6,t=-1.

查看答案和解析>>

同步練習(xí)冊(cè)答案