【題目】當,則稱點為平面上單調(diào)格點:設(shè)
求從區(qū)域中任取一點,而該點落在區(qū)域上的概率;
求從區(qū)域中的所有格點中任取一點,而該點是區(qū)域上的格點的概率.
【答案】(1);(2)
【解析】試題分析:(1)作出集合所對應(yīng)的區(qū)域,記事件 “從區(qū)域中任取一點,而該點落在區(qū)域上”,根據(jù)幾何概型,利用面積比,即可求解概率;
(2)事件 “從區(qū)域中的所有格點中任取一點,而該點是區(qū)域上的格點”,得出基本事件的總數(shù),和事件所包含的基本事件的個數(shù),利用古典概型及概率的計算公式,即可求解事件的概率.
試題解析:
作出集合所對應(yīng)的區(qū)域(如圖):
矩形
則:(1)記事件 “從區(qū)域中任取一點,而該點落在區(qū)域上”
則事件符合幾何概型,即.
(2)事件 “從區(qū)域中的所有格點中任取一點,而該點是區(qū)域上的格點”
則事件符合古典概型,區(qū)域中的格點個數(shù):當橫坐標分別為0,1,2時,縱坐標可以為0,1,2,3中的任一個,此時有個;而區(qū)域上的格點有(0,3),(1,2),(2,3),(1,2)共4個,
∴
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)為自然對數(shù)的底數(shù).
(1)求曲線在處的切線方程;
(2)關(guān)于的不等式在上恒成立,求實數(shù)的值;
(3)關(guān)于的方程有兩個實根,求證: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知△ABC中,A,B,C的對邊分別是a,b,c,且2cos2 sinB,a=3c
(Ⅰ)分別求tanC和sin2C的值;
(Ⅱ)若b=1,求△ABC的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知等比數(shù)列{an}的前n項和Sn , 首項a1=a,公比為q(q≠0且q≠1).
(1)推導(dǎo)證明:Sn= ;
(2)等比數(shù)列{an}中,是否存在連續(xù)的三項:ak、ak+1、ak+2 , 使得這三項成等差數(shù)列?若存在,求出符合條件的等比數(shù)列公比q的值,若不存在,說明理由;
(3)本題中,若a=q=2,已知數(shù)列{nan}的前n項和Tn , 是否存在正整數(shù)n,使得Tn≥2016?若存在,求出n的取值集合;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知△ABC的角A、B、C所對的邊分別是a、b、c,設(shè)向量 , , .
(1)若 ∥ ,求證:△ABC為等腰三角形;
(2)若 ⊥ ,邊長c=2,角C= ,求△ABC的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校用簡單隨機抽樣方法抽取了30名同學(xué),對其每月平均課外閱讀時間(單位:小時)進行調(diào)查,莖葉圖如圖:
若將月均課外閱讀時間不低于30小時的學(xué)生稱為“讀書迷”.
(1)將頻率視為概率,估計該校900名學(xué)生中“讀書迷”有多少人?
(2)從已抽取的7名“讀書迷”中隨機抽取男、女“讀書迷”各1人,參加讀書日宣傳活動.
(i)共有多少種不同的抽取方法?
(ii)求抽取的男、女兩位“讀書迷”月均讀書時間相差不超過2小時的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com