【題目】若對(duì)滿足條件3x+3y+8=2xy(x>0,y>0)的任意x、y,(x+y)2﹣a(x+y)+16≥0恒成立,則實(shí)數(shù)a的取值范圍是( 。
A.(﹣∞,8]B.[8,+∞)C.(﹣∞,10]D.[10,+∞)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了解某品種一批樹苗生長(zhǎng)情況,在該批樹苗中隨機(jī)抽取了容量為120的樣本,測(cè)量樹苗高度(單位:,經(jīng)統(tǒng)計(jì),其高度均在區(qū)間,內(nèi),將其按,,,,,,,,,,,分成6組,制成如圖所示的頻率分布直方圖.其中高度為及以上的樹苗為優(yōu)質(zhì)樹苗.
(1)求圖中的值,并估計(jì)這批樹苗的平均高度(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表);
(2)已知所抽取的這120棵樹苗來自于,兩個(gè)試驗(yàn)區(qū),部分?jǐn)?shù)據(jù)如下列聯(lián)表:
試驗(yàn)區(qū) | 試驗(yàn)區(qū) | 合計(jì) | |
優(yōu)質(zhì)樹苗 | 20 | ||
非優(yōu)質(zhì)樹苗 | 60 | ||
合計(jì) |
將列聯(lián)表補(bǔ)充完整,并判斷是否有的把握認(rèn)為優(yōu)質(zhì)樹苗與,兩個(gè)試驗(yàn)區(qū)有關(guān)系,并說明理由.
下面的臨界值表僅供參考:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(參考公式:,其中.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖☆的曲線,其生成方法是(I)將正三角形(圖(1))的每邊三等分,并以中間的那一條線段為一底邊向形外作等邊三角形,然后去掉底邊,得到圖(2);(II)將圖(2)的每邊三等分,重復(fù)上述的作圖方法,得到圖(3);(III)再按上述方法繼續(xù)做下去,所得到的曲線稱為雪花曲線(Koch Snowflake),
(1)(2)(3).
設(shè)圖(1)的等邊三角形的邊長(zhǎng)為1,并且分別將圖(1)、(2)、(3)…中的圖形依次記作M1、M2、M3、……
(1)設(shè)中的邊數(shù)為中每條邊的長(zhǎng)度為,寫出數(shù)列和的遞推公式與通項(xiàng)公式;
(2)設(shè)的周長(zhǎng)為,所圍成的面積為,求數(shù)列{}與{}的通項(xiàng)公式;請(qǐng)問周長(zhǎng)與面積的極限是否存在?若存在,求出該極限,若不存在,簡(jiǎn)單說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某商家對(duì)他所經(jīng)銷的一種商品的日銷售量(單位:噸)進(jìn)行統(tǒng)計(jì),最近50天的統(tǒng)計(jì)結(jié)果
如下表:
日銷售量 | 1 | 1.5 | 2 |
天數(shù) | 10 | 25 | 15 |
頻率 | 0.2 |
若以上表中頻率作為概率,且每天的銷售量相互獨(dú)立.
(1)求5天中該種商品恰好有兩天的銷售量為1.5噸的概率;
(2)已知每噸該商品的銷售利潤為2千元,表示該種商品某兩天銷售利潤的和(單位:千元),求的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2019年全國“兩會(huì)”,即中華人民共和國第十三屆全國人大二次會(huì)議和中國人民政治協(xié)商會(huì)議第十三屆全國委員會(huì)第二次會(huì)議,分別于2019年3月5日和3月3日在北京召開.為了了解哪些人更關(guān)注“兩會(huì)”,某機(jī)構(gòu)隨機(jī)抽取了年齡在15~75歲之間的200人進(jìn)行調(diào)查,并按年齡繪制的頻率分布直方圖如下圖所示,把年齡落在區(qū)間[15,35)和[35,75]內(nèi)的人分別稱為“青少年人”和“中老年人”.經(jīng)統(tǒng)計(jì)“青少年人”和“中老年人”的人數(shù)之比為19:21.其中“青少年人”中有40人關(guān)注“兩會(huì)”,“中老年人”中關(guān)注“兩會(huì)”和不關(guān)注“兩會(huì)”的人數(shù)之比是2:1.
(Ⅰ)求圖中的值;
(Ⅱ)現(xiàn)采用分層抽樣在[25,35)和[45,55)中隨機(jī)抽取8名代表,從8人中任選2人,求2人中至少有1個(gè)是“中老年人”的概率是多少?
(Ⅲ)根據(jù)已知條件,完成下面的2×2列聯(lián)表,并根據(jù)此統(tǒng)計(jì)結(jié)果判斷:能否有99.9%的把握認(rèn)為“中老年人”比“青少年人”更加關(guān)注“兩會(huì)”?
關(guān)注 | 不關(guān)注 | 合計(jì) | |
青少年人 | |||
中老年人 | |||
合計(jì) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】F是雙曲線1(a>0,b>0)的左焦點(diǎn),過點(diǎn)F作雙曲線的一條漸近線的垂線,垂足為A,交另一條漸近線于點(diǎn)B.若3,則此雙曲線的離心率為( )
A.2B.3C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)橢圓,定義橢圓的“相關(guān)圓”方程為.若拋物線的焦點(diǎn)與橢圓的一個(gè)焦點(diǎn)重合,且橢圓短軸的一個(gè)端點(diǎn)和其兩個(gè)焦點(diǎn)構(gòu)成直角三角形.
(1)求橢圓的方程和“相關(guān)圓”的方程;
(2)過“相關(guān)圓”上任意一點(diǎn)的直線與橢圓交于兩點(diǎn).為坐標(biāo)原點(diǎn),若,證明原點(diǎn)到直線的距離是定值,并求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知一條曲線C在y軸右邊,C上每一點(diǎn)到點(diǎn)F(1,0)的距離減去它到y軸距離的差都是1
(1)求曲線C的方程.
(2)是否存在正數(shù)m,對(duì)于過點(diǎn)M(m,0)且與曲線C有兩個(gè)交點(diǎn)A,B的任一直線,都有?若存在,求出m的取值范圍,若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方體ABCD-ABCD中,平面垂直于對(duì)角線AC,且平面截得正方體的六個(gè)表面得到截面六邊形,記此截面六邊形的面積為S,周長(zhǎng)為l,則( )
A. S為定值,l不為定值 B. S不為定值,l為定值
C. S與l均為定值 D. S與l均不為定值
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com