分析 (1)設(shè)這四個(gè)數(shù)為a-d,a,a+d,a+2d,推導(dǎo)出2a+d=4,a<2,再由(a-d+2)(a+d+1)=(a+1)2,能求出這四個(gè)數(shù).
(2)由a1=-1,d=2,能求出Sn.
解答 解:(1)∵四個(gè)數(shù)成遞增等差數(shù)列,其和為8,
前三個(gè)數(shù)依次分別加上2,1,1,則此三個(gè)數(shù)成等比數(shù)列.
∴設(shè)這四個(gè)數(shù)為a-d,a,a+d,a+2d,
由a-d+a+a+d+a+2d=8,
即2a+d=4,d=4-2a,
由于是遞增數(shù)列,所以d>0,即a<2,
又前三個(gè)數(shù)依次分別加上2,1,1,此三個(gè)數(shù)成等比數(shù)列,
由(a-d+2)(a+d+1)=(a+1)2,
即(a-4+2a+2)(a+4-2a+1)=(a+1)2,
解得a=1或a=$\frac{11}{4}$(舍去),
∴d=4-2a=2,∴這四個(gè)數(shù)分別是:-1,1,3,5.
(2)∵a1=-1,d=2,
∴Sn=-n+$\frac{n(n-1)}{2}×2$=n2-2n.
點(diǎn)評 本題考查等差數(shù)列的前四項(xiàng)及前n項(xiàng)和的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意等差數(shù)列、等比數(shù)列的性質(zhì)的合理運(yùn)用.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 充分不必要條件 | B. | 必要不充分條件 | ||
C. | 充要條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 充分不必要條件 | B. | 必要不充分條件 | ||
C. | 充要條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com