16.已知集合A={2,4,x2-5x+9},B={3,x2+ax+a},并且2∈B,B⊆A,計算a,x的值.

分析 根據(jù)集合的互異性得到x2+ax+a=2,x2-5x+9=3,據(jù)此求得a,x的值.

解答 解:∵集合A={2,4,x2-5x+9},B={3,x2+ax+a},并且2∈B,
∴x2+ax+a=2.
又∵B⊆A,
∴x2-5x+9=3,
∴x=2或x=3.
當(dāng)x=2時,4+2a+a=2,則a=-$\frac{2}{3}$;
當(dāng)x=3時,9+3a+a=2,則a=-$\frac{7}{4}$,
綜上所述,x=2,a=-$\frac{2}{3}$或x=3,a=-$\frac{7}{4}$.

點評 本題主要考查元素與集合的關(guān)系,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.給出下列從A到B的對應(yīng):
①A=N,B={0,1},對應(yīng)關(guān)系是:A中的元素除以2所得的余數(shù)
②A={0,1,2},B={4,1,0},對應(yīng)關(guān)系是f:x→y=x2
③A={0,1,2},B={0,1,$\frac{1}{2}$},對應(yīng)關(guān)系是f:x→y=$\frac{1}{x}$
其中表示從集合A到集合B的函數(shù)有(  )個.
A.1B.2C.3D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知數(shù)列{an}的前n項和為Sn,且滿足Sn=2an-1(n∈N*),則數(shù)列{nan}項和Tn(n-1)•2n+1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知函數(shù)f(x)=xlnx.
(Ⅰ)求函數(shù)f(x)在[1,3]上的最小值;
(Ⅱ)若存在$x∈[\frac{1}{e},e]$使不等式2f(x)≥-x2+ax-3成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.函數(shù)f(x)=x${\;}^{-\frac{1}{2}}$+ln(x+1)的定義域為( 。
A.(-1,0)B.(-1,+∞)C.(0,+∞)D.[0,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.給出下列命題:
(1)函數(shù)y=sin|x|不是周期函數(shù);
(2)函數(shù)y=tanx在定義域內(nèi)為增函數(shù);
(3)函數(shù)y=|cos2x+$\frac{1}{2}$|的最小正周期為$\frac{π}{2}$;
(4)函數(shù)y=4sin(2x+$\frac{π}{3}$),x∈R的一條對稱軸為$x=\frac{π}{12}$.
其中正確命題的序號是(1)(4).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.給出四個命題:①末尾數(shù)是偶數(shù)的整數(shù)能被2整除除;②有的菱形是正方形;③存在實數(shù)x,x>0;④對于任意實數(shù)x,2x+1是奇數(shù),下列說法正確的是( 。
A.四個命題都是真命題B.①②是全稱命題
C.②③是特稱命題D.四個命題中有兩個假命題

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知集合A={1,2,3,4,5,6},B={1,3,6},那么A∩B等于( 。
A.{1,2,3,4,5}B.{1,2,3,4,5,6}C.{1,3,6}D.{3,4,6}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知sin2α=3sin2β,則$\frac{{tan({α-β})}}{{tan({α+β})}}$=(  )
A.2B.$\frac{3}{4}$C.$\frac{3}{2}$D.$\frac{1}{2}$

查看答案和解析>>

同步練習(xí)冊答案