6.已知sin2α=3sin2β,則$\frac{{tan({α-β})}}{{tan({α+β})}}$=( 。
A.2B.$\frac{3}{4}$C.$\frac{3}{2}$D.$\frac{1}{2}$

分析 將所求利用同角三角函數(shù)基本關(guān)系式,積化和差公式化簡(jiǎn),結(jié)合已知即可計(jì)算得解.

解答 解:∵sin2α=3sin2β,
∴$\frac{{tan({α-β})}}{{tan({α+β})}}$=$\frac{sin(α-β)cos(α+β)}{sin(α+β)cos(α-β)}$=$\frac{\frac{1}{2}[sin2α-sin2β]}{\frac{1}{2}[sin2α+sin2β]}$=$\frac{2sin2β}{4sin2β}$=$\frac{1}{2}$.
故選:D.

點(diǎn)評(píng) 本題主要考查了同角三角函數(shù)基本關(guān)系式,積化和差公式在三角函數(shù)化簡(jiǎn)求值中的應(yīng)用,考查了計(jì)算能力和轉(zhuǎn)化思想,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知集合A={2,4,x2-5x+9},B={3,x2+ax+a},并且2∈B,B⊆A,計(jì)算a,x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知曲線f(x)=$\frac{x}{e^x}$-axlnx在點(diǎn)(1,f(1))處的切線方程為y=-x+$\frac{1}{e}$+b-1,則下列命題是真命題的個(gè)數(shù)為(  )
①?x∈(0,+∞),f(x)<$\frac{e}$;   
②?x0∈(0,e),f(x0)=0;   
③?x∈(0,+∞),f(x)>$\frac{4e}$;   
④?x0∈(1,e),f(x0)=$\frac{1}{2e}$.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知四棱錐S-ABCD的底面是邊長(zhǎng)為2的正方形,SD⊥平面ABCD,且SD=AB,則四棱錐S-ABCD的外接球的表面積為( 。
A.144πB.64πC.12πD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知f(x)=lnx+x,g(x)=$\frac{1}{3}{x^3}+\frac{1}{2}{x^2}$+ax+b,直線l與函數(shù)f(x),g(x)的圖象都相切于點(diǎn)(1,0)
(1)求直線l的方程;
(2)求函數(shù)g(x)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.若集合E={x|-1<x<9,x∈N},F(xiàn)={y|y=x-5,x∈E},則E∩F=( 。
A.{1,2,3}B.C.{0,1,2,3}D.{0,1,2,3,4}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.拋物線y2=2px(p>0)的焦點(diǎn)是F,弦AB過點(diǎn)F,且|AB|=8,若AB的傾斜角是α,且cosα是|x-1|+|x-$\frac{1}{2}$|的最小值,則p的值為(  )
A.1B.6C.4D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.若一個(gè)橢圓的長(zhǎng)軸長(zhǎng)是短軸長(zhǎng)的3倍,焦距為8,則這個(gè)橢圓的標(biāo)準(zhǔn)方程為$\frac{{x}^{2}}{18}+\frac{{y}^{2}}{2}=1$或$\frac{{y}^{2}}{18}+\frac{{x}^{2}}{2}=1$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知a>1,設(shè)命題P:a(x-2)+1>0,命題Q:(x-1)2>a(x-2)+1.試求使得P、Q都是真命題的x的集合.

查看答案和解析>>

同步練習(xí)冊(cè)答案