4.(x+y+z)4的展開式共( 。╉(xiàng).
A.10B.15C.20D.21

分析 根據(jù)二項(xiàng)式定理的展開式即可的得出結(jié)論.

解答 解:(x+y+z)4=(x+y)4+4(x+y)3z+6(x+y)2z2+4(x+y)z3+z4
根據(jù)二項(xiàng)式定理:(x+y)n展示式中共有n+1項(xiàng),所以上式中:共有5+4+3+2+1=15項(xiàng).
故選:B.

點(diǎn)評(píng) 本題考查了二項(xiàng)式定理的應(yīng)用,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知數(shù)列{an}的前n項(xiàng)和${S_n}={n^2}+2n$,數(shù)列{bn}滿足3n-1bn=a2n-1
(I)求an,bn;
(Ⅱ)設(shè)Tn為數(shù)列{bn}的前n項(xiàng)和,求Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知f(x)=$\left\{\begin{array}{l}{3{x}^{2}+ln(\sqrt{1+{x}^{2}}+x),x≥0}\\{3{x}^{2}+ln(\sqrt{1+{x}^{2}}-x),x<0}\end{array}\right.$,若f(x-1)<f(2x+1),則x的取值范圍為{x|x>0,或x<-2 }.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知定義在(0,+∞)上連續(xù)可導(dǎo)的函數(shù)f(x)滿足xf'(x)+f(x)=x,且f(1)=1,則(  )
A.f(x)是增函數(shù)B.f(x)是減函數(shù)C.f(x)有最大值1D.f(x)有最小值1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.在如圖所示的六面體中,面ABCD是邊長為2的正方形,面ABEF是直角梯形,∠FAB=90°,AF∥BE,BE=2AF=4.
(Ⅰ)求證:AC∥平面DEF;
(Ⅱ)若二面角E-AB-D為60°,求直線CE和平面DEF所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知集合A={x∈R||x|<2},B={x∈R|x+1≥0},則A∩B=( 。
A.(-2,1]B.[-1,2)C.[-1,+∞)D.(-2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.雙曲線$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{12}$=1的焦點(diǎn)坐標(biāo)為(-4,0),(4,0),離心率為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知函數(shù)y=5cos($\frac{2k+1}{3}$πx-$\frac{π}{6}$)(其中k∈N),對(duì)任意實(shí)數(shù)a,在區(qū)間[a,a+3]上要使函數(shù)值$\frac{5}{4}$出現(xiàn)的次數(shù)不少于4次且不多于8次,則k值為( 。
A.2或3B.4或3C.5或3D.8或3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.設(shè)f(x)是定義在R上的偶函數(shù),且f(2+x)=f(2-x),當(dāng)x∈[-2,0]時(shí),f(x)=($\frac{\sqrt{2}}{2}$)x-1,若在區(qū)間(-2,6)內(nèi)關(guān)于x的方程f(x)-log a(x+2)=0,恰有4個(gè)不同的實(shí)數(shù)根,則實(shí)數(shù)a(a>0,a≠1)的取值范圍是( 。
A.($\frac{1}{4}$,1)B.(1,4)C.(1,8)D.(8,+∞)

查看答案和解析>>

同步練習(xí)冊(cè)答案