9.實數(shù)x,y滿足條件$\left\{\begin{array}{l}{x≥1}\\{x+y≤3}\\{-2x+3y+5≥0}\end{array}\right.$,則目標(biāo)函數(shù)z=x+2y的最大值為( 。
A.5B.4C.-1D.$\frac{16}{5}$

分析 畫出滿足條件的平面區(qū)域,求出角點的坐標(biāo),結(jié)合函數(shù)的圖象求出z的最大值即可.

解答 解:畫出滿足條件的平面區(qū)域,如圖示:
,
由$\left\{\begin{array}{l}{x=1}\\{x+3=3}\end{array}\right.$,解得A(1,2),
由z=x+2y得:y=-$\frac{1}{2}$x+$\frac{z}{2}$,
顯然直線過A(1,2)時,z最大,z的最大值是5,
故選:A.

點評 本題考查了簡單的線性規(guī)劃問題,考查數(shù)形結(jié)合思想,是一道中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知cosα=$\frac{3}{5}$,cos(α+β)=-$\frac{5}{13}$,且α∈(0,$\frac{π}{2}$),β∈(0,$\frac{π}{2}$),求cosβ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知a1=$\frac{1}{4}$(1-$\frac{1}{3}$),a2=$\frac{1}{4}$($\frac{1}{3}$-$\frac{1}{5}$),a3=$\frac{1}{4}$($\frac{1}{5}$-$\frac{1}{7}$),a4=$\frac{1}{4}$($\frac{1}{7}$-$\frac{1}{9}$),…,以此類推a1+a2+a3+…+a1008的值為$\frac{504}{2017}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知雙曲線$\frac{{x}^{2}}{{a}^{2}}-{y}^{2}$=1的一條漸近線與直線y=-x+1垂直,則該雙曲線的焦距為2$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知命題p:?x∈R,x2<0;命題q:?x>2,log${\;}_{\frac{1}{2}}$x<0,則下列命題中為真命題的是( 。
A.p∧qB.p∧¬qC.¬p∧qD.p∨¬q

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知Sn為等差數(shù)列{an}的前n項和,給出下列兩個命題:
命題p:若S3,S9都大于9,則S6大于11
命題q:若S6不小于12,則S3,S9中至少有1個不小于9.
那么,下列命題為真命題的是( 。
A.¬pB.(¬p)∧(¬q)C.p∧qD.p∧(¬q)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知平面向量$\overrightarrow{a}$與$\overrightarrow$的夾角為60°,|$\overrightarrow{a}$|=3,|$\overrightarrow$|=1,則|$\overline{a}$+2$\overrightarrow$|=$\sqrt{19}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知P(x,y)是函數(shù)y=ax+2-1(a>0且a≠1)上任意一點,Q(y+1,x+2)在函數(shù)y=f(x)圖象上,g(x)=f(x)[f(x)+2f(2)-1].求g(x)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知橢圓E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左焦點為F1,右焦點為F2,離心率e=$\frac{1}{3}$,過F1的直線交橢圓于A,B兩點,且△ABF2的周長為12.
(1)求橢圓E的方程;
(2)設(shè)動直線l:y=kx+m與橢圓E相切于點P,且與直線x=9相交于點Q,試探索以PQ為直徑的圓是否恒過x軸上一定點?若是,請求出定點的坐標(biāo);否則,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案