【題目】以下關于圓錐曲線的命題中:①雙曲線與橢圓有相同的焦點;②設、是兩個定點,為非零常數(shù),若,則動點的軌跡為雙曲線的一支;③設點、分別是定圓上一個定點和動點,為坐標原點,若,則動點的軌跡為圓;其中真命題是_________.(寫出所有真命題的序號)

【答案】①③

【解析】

①根據(jù)雙曲線和橢圓的幾何性質即可得解;②根據(jù)雙曲線的定義即可得解;③根據(jù)平面向量的加法法則,可知點為弦的中點,再判定點的軌跡即可.

①在雙曲線中,,在橢圓中,,且焦點均在軸上,所以①正確;

②由雙曲線的定義知,只有當時,動點的軌跡才為雙曲線的一支,即②錯誤;

③若,則點為弦的中點,由垂徑定理可知,,所以動點的軌跡是圓,即③正確;

所以真命題為①③.

故答案為:①③.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】某超市計劃按月訂購一種酸奶,每天進貨量相同,進貨成本每瓶4元,售價每瓶7元,未售出的酸奶降價處理,以每瓶1.5元的價格當天全部處理完.據(jù)往年銷售經(jīng)驗,每天需求量與當天最高氣溫(單位:)有關,如果最高氣溫不低于25,需求量為500瓶;如果最高氣溫位于區(qū)間,需求量為300瓶;如果最高氣溫低于20,需求量為200瓶,為了確定六月份的訂購計劃,統(tǒng)計了前三年六月份各天的最高氣溫數(shù)據(jù),得到下面的頻數(shù)分布表:

最高氣溫

天數(shù)

2

14

34

27

9

4

以最高氣溫位于各區(qū)間的頻率代替最高氣溫位于該區(qū)間的概率.

1)求六月份這種酸奶一天的需求量不超過300瓶的概率;

2)設六月份一天銷售這種酸奶的利潤為(單位:元),若該超市在六月份每天的進貨量均為450瓶,寫出的所有可能值,并估計大于零的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某高校在2019的自主招生考試中,考生筆試成績分布在,隨機抽取200名考生成績作為樣本研究,按照筆試成績分成5組,第1組成績?yōu)?/span>,第2組成績?yōu)?/span>,第3組成績?yōu)?/span>,第4組成績?yōu)?/span>,第5組成績?yōu)?/span>,樣本頻率分布直方圖如下:

1)估計全體考生成績的中位數(shù);

2)為了能選撥出最優(yōu)秀的學生,該校決定在筆試成績高的第34,5組中用分層抽樣抽取6名學生進入第二輪面試,從這6名學生中隨機抽取2名學生進行外語交流面試,求這2名學生均來自同一組的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖在直角中,為直角,,分別為,的中點,將沿折起,使點到達點的位置,連接,的中點.

(Ⅰ)證明:;

(Ⅱ)若,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某工廠每年定期對職工進行培訓以提高工人的生產(chǎn)能力(生產(chǎn)能力是指一天加工的零件數(shù)).現(xiàn)有、兩類培訓,為了比較哪類培訓更有利于提高工人的生產(chǎn)能力,工廠決定從同一車間隨機抽取100名工人平均分成兩個小組分別參加這兩類培訓.培訓后測試各組工人的生產(chǎn)能力得到如下頻率分布直方圖.

(1)記表示事件“參加類培訓工人的生產(chǎn)能力不低于130件”,估計事件的概率;

(2)填寫下面列聯(lián)表,并根據(jù)列聯(lián)表判斷是否有的把握認為工人的生產(chǎn)能力與培訓類有關:

生產(chǎn)能力

生產(chǎn)能力

總計

類培訓

50

類培訓

50

總計

100

(3)根據(jù)頻率分布直方圖,判斷哪類培訓更有利于提高工人的生產(chǎn)能力,請說明理由.

參考數(shù)據(jù)

0.15

0.10

0.050

0.025

0.010

0.005

2.072

2.706

3.841

5.024

6.635

7.879

參考公式:,其中.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓

(1)若橢圓的離心率為,求的值;

(2)若過點任作一條直線與橢圓交于不同的兩點,在軸上是否存在點,使得, 若存在,求出點的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,圓錐的軸截面為等腰為底面圓周上一點。

(1)若的中點為,求證: 平面;

(2)如果,求此圓錐的體積;

(3)若二面角大小為,求.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】圖一是美麗的勾股樹,它是一個直角三角形分別以它的每一邊向外作正方形而得到.圖二是第1勾股樹,重復圖二的作法,得到圖三為第2勾股樹,以此類推,已知最大的正方形面積為1,則第勾股樹所有正方形的個數(shù)與面積的和分別為(

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

1)當時,求曲線處的切線方程;

2)求函數(shù)的單調區(qū)間;

3)若函數(shù)在區(qū)間內(nèi)有且只有一個極值點,求的取值范圍.

查看答案和解析>>

同步練習冊答案