設(shè)函數(shù)。
(1)當(dāng)a=l時(shí),求函數(shù)的極值;
(2)當(dāng)a2時(shí),討論函數(shù)的單調(diào)性;
(3)若對(duì)任意a∈(2,3)及任意x1,x2∈[1,2],恒有成立,求
實(shí)數(shù)m的取值范圍。
(Ⅰ),無(wú)極大值。
(Ⅱ)當(dāng)時(shí),單調(diào)遞減
當(dāng)時(shí),單調(diào)遞減,在上單調(diào)遞增。
(Ⅲ)。
【解析】
試題分析:(Ⅰ)函數(shù)的定義域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2013061310512139923953/SYS201306131053171961651072_DA.files/image008.png">
當(dāng)時(shí), 令
當(dāng)時(shí),;當(dāng)時(shí),
單調(diào)遞減,在單調(diào)遞增
,無(wú)極大值 4分
(Ⅱ)
5分
當(dāng),即時(shí),上是減函數(shù)
當(dāng),即時(shí),令,得
令,得
當(dāng),時(shí)矛盾舍 7分
綜上,當(dāng)時(shí),單調(diào)遞減
當(dāng)時(shí),單調(diào)遞減,在上單調(diào)遞增 8分
(Ⅲ)由(Ⅱ)知,當(dāng)時(shí),上單調(diào)遞減
當(dāng)時(shí),有最大值,當(dāng)時(shí),有最小值
10分
而經(jīng)整理得 12分
考點(diǎn):本題主要考查應(yīng)用導(dǎo)數(shù)研究函數(shù)的單調(diào)性及極值,不等式恒成立問(wèn)題。
點(diǎn)評(píng):典型題,本題屬于導(dǎo)數(shù)應(yīng)用中的基本問(wèn)題,(3)涉及恒成立問(wèn)題,轉(zhuǎn)化成求函數(shù)的最值,這種思路是一般解法,往往要利用“分離參數(shù)法”。涉及對(duì)數(shù)函數(shù),要特別注意函數(shù)的定義域。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(本小題滿分高☆考♂資♀源*網(wǎng)12分)
設(shè)函數(shù)。
(1)當(dāng)a=1時(shí),求的單調(diào)區(qū)間。
(2)若在上的最大值為,求a的值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年甘肅省高三上學(xué)期第二次月考數(shù)學(xué)試卷(解析版) 題型:解答題
(本小題滿分12分)
設(shè)函數(shù)。
(1)當(dāng)a=1時(shí),求的單調(diào)區(qū)間。
(2)若在上的最大值為,求a的值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年海南省高三教學(xué)質(zhì)量監(jiān)測(cè)理科數(shù)學(xué)卷 題型:解答題
(選修4—5:不等式選講)設(shè)函數(shù)。
(1)當(dāng)a=-5時(shí),求函數(shù)的定義域。
(2)若函數(shù)的定義域?yàn)镽,求實(shí)數(shù)a的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2010年高考試題(江西卷)解析版(理) 題型:解答題
設(shè)函數(shù)。
(1)當(dāng)a=1時(shí),求的單調(diào)區(qū)間。
(2)若在上的最大值為,求a的值。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com