分析 設(shè)三個(gè)等差數(shù)列分別為a-d,a,a+d,三個(gè)等比數(shù)列分別為$\frac{m}{q}$,m,mq,由題意,對(duì)應(yīng)項(xiàng)依次相加,分別得到85,76,84,即可求a,和m,可得這兩個(gè)數(shù)列.
解答 解:由題意,依次設(shè)這三個(gè)等差數(shù)列分別為a-d,a,a+d,則a-d+a+a+d=3a=126,∴a=42.
依次設(shè)這三個(gè)等比數(shù)列分別為$\frac{m}{q}$,m,mq,則a+m=76,可得m=34
∴$\left\{\begin{array}{l}{42-d+\frac{34}{q}=85}\\{42+d+34q=84}\end{array}\right.$,解得:$\left\{\begin{array}{l}{q=2}\\{d=-26}\end{array}\right.$或$\left\{\begin{array}{l}{q=\frac{1}{2}}\\{d=25}\end{array}\right.$.
∴等差數(shù)列依次為:68,42,16,等比數(shù)列依次為:17,34,68
或:等差數(shù)列依次為:17,42,67,等比數(shù)列依次為:68,34,17.
點(diǎn)評(píng) 本題考查了等差數(shù)列與等比數(shù)列的運(yùn)用和計(jì)算能力,是中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 若x0為函數(shù)y=f(x)的駐點(diǎn),則x0必為函數(shù)y=f(x)的極值點(diǎn) | |
B. | 函數(shù)y=f(x)導(dǎo)數(shù)不存在的點(diǎn),一定不是函數(shù)y=f(x)的極值點(diǎn) | |
C. | 若函數(shù)y=f(x)在x0處取得極值,且f′(x0)存在,則必有f′(x0)=0 | |
D. | 若函數(shù)y=f(x)在x0處連續(xù),則f′(x0)一定存在 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 30° | B. | 60° | C. | 120° | D. | 150° |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 8 | B. | 7 | C. | 6 | D. | 5 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 1 | B. | -1 | C. | 2 | D. | -2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{1}{6}$ | B. | $\frac{1}{12}$ | C. | $\frac{{\sqrt{3}-\sqrt{2}}}{4}$ | D. | $\frac{{\sqrt{3}-\sqrt{2}}}{2}$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com