如果平面的一條斜線和它在這個(gè)平面上的射影的方向向量分別是那么這條斜線與平面所成的角是 ____________

解析試題分析:根據(jù)題意可知,由于已知平面的一條斜線和它在這個(gè)平面上的射影的方向向量分別是,那么結(jié)合向量的數(shù)量積公式可知,,可知向量的夾角為,即為這條斜線與平面所成的角是。故答案為
考點(diǎn):本試題考查了線面角的求解。
點(diǎn)評(píng):對(duì)于斜線與平面所成的角冠軍艾女士對(duì)于平面的射影的確定,然后結(jié)合法向量與平面的斜向量坐標(biāo)關(guān)系,結(jié)合數(shù)量積公式得到夾角。屬于基礎(chǔ)題。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

在正方體ABCD—A1B1C1D1各個(gè)表面的對(duì)角線中,與直線異面的有__________條

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

正四棱錐P-ABCD的所有棱長(zhǎng)都相等,則側(cè)棱與底面所成的角為           .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

已知正三棱柱ABC-A1B1C1的各條棱長(zhǎng)都相等,M是側(cè)棱CC1的中點(diǎn),則異面直線AB1和BM所成的角的大小是______________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

如圖所示的三棱錐A-BCD中,∠BAD=90°,AD⊥BC,AD=4,AB=AC=2,∠BAC=120°,若點(diǎn)P為△ABC內(nèi)的動(dòng)點(diǎn)滿足直線DP與平面ABC所成角的正切值為2,則點(diǎn)P在△ABC內(nèi)所成的軌跡的長(zhǎng)度為              

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

如圖,直四棱柱的底面是邊長(zhǎng)為1的正方形,側(cè)棱長(zhǎng),則異面直線的夾角大小等于___________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

正三棱錐中,,的中點(diǎn)分別為,且,則正三棱錐外接球的表面積為                    .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

如果空間中若干點(diǎn)在同一平面內(nèi)的射影在一條直線上,那么這些點(diǎn)在空間的位置是__________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

如圖,空間中兩個(gè)有一條公共邊AD的正方形ABCD和ADEF.設(shè)M、N分別是BD和AE的中點(diǎn),那么        

①AD⊥MN;②MN∥平面CDE;③MN∥CE;④MN、CE異面
以上4個(gè)命題中正確的是  

查看答案和解析>>

同步練習(xí)冊(cè)答案