已知正三棱柱ABC-A1B1C1的各條棱長(zhǎng)都相等,M是側(cè)棱CC1的中點(diǎn),則異面直線AB1和BM所成的角的大小是______________.

解析試題分析:由題意設(shè)棱長(zhǎng)為a,補(bǔ)正三棱柱ABC-A2B2C2,構(gòu)造直角三角形A2BM,解直角三角形求出BM,利用勾股定理求出A2M,從而求解.設(shè)棱長(zhǎng)為a,補(bǔ)正三棱柱ABC-A2B2C2(如圖)

平移,連接,∠MBA2即為所成的角,
在△A2BM中,A2B=,,,結(jié)合勾股定理∴2+ =可知所求的角為.故答案為
考點(diǎn):異面直線所成的角
點(diǎn)評(píng):此題主要考查了異面直線及其所成的角和勾股定理的應(yīng)用,計(jì)算比較復(fù)雜,要仔細(xì)的做.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

如圖,正方體的棱長(zhǎng)為1,的中點(diǎn),為線段上的動(dòng)點(diǎn),過(guò)點(diǎn)的平面截該正方體所得的截面記為,則下列命題正確的是         (寫(xiě)出所有正確命題的編號(hào))。

①當(dāng)時(shí),為四邊形
②當(dāng)時(shí),為等腰梯形
③當(dāng)時(shí),的交點(diǎn)滿(mǎn)足
④當(dāng)時(shí),為六邊形
⑤當(dāng)時(shí),的面積為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

已知二面角α–l-β的平面角為45°,有兩條異面直線a,b分別垂直于平面,則異面直線所成角的大小是                

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

如圖,已知六棱錐PABCDEF的底面是正六邊形,平面ABC,給出下列結(jié)論:①;②平面平面PBC;③直線平面PAE;④;⑤直線PD與平面PAB所成角的余弦值為
其中正確的有                (把所有正確的序號(hào)都填上)。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

點(diǎn)在正方體的面對(duì)角線上運(yùn)動(dòng),則下列四個(gè)命題:

①三棱錐的體積不變;②∥平面
;④平面平面.
其中正確的命題序號(hào)是            .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

如圖,矩形與矩形所在的平面互相垂直,將沿翻折,翻折后的點(diǎn)E恰與BC上的點(diǎn)P重合.設(shè),,則當(dāng)__時(shí),有最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

如果平面的一條斜線和它在這個(gè)平面上的射影的方向向量分別是那么這條斜線與平面所成的角是 ____________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

三棱柱ABC-A1B1C1中,底面邊長(zhǎng)和側(cè)棱長(zhǎng)都相等,∠BAA1=∠CAA1=60°,則異面直線AB1與BC1所成角的余弦值為_(kāi)_______. 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

正方形ABCD所在平面與正方形ABEF所在平面成60°的二面角,則對(duì)角線AC與對(duì)角線BF對(duì)所成角的余弦值是__________.             .

查看答案和解析>>

同步練習(xí)冊(cè)答案