【題目】已知橢圓.

1)曲線相交于,兩點(diǎn),上異于,的點(diǎn),若直線的斜率為1,求直線的斜率;

2)若的左焦點(diǎn)為,右頂點(diǎn)為,直線.的直線相交于,在第一象限)兩點(diǎn),與相交于,是否存在使的面積等于的面積與的面積之和.若存在,求直線的方程;若不存在,請說明理由.

【答案】1;(2)直線不存在,理由見解析

【解析】

(1)設(shè),,,利用點(diǎn)差法可得,從而求出;

(2)假設(shè)存在滿足題意,設(shè),,,,,,可得,設(shè):,,,,再聯(lián)立直線與橢圓方程,得到韋達(dá)定理,將之與②聯(lián)立求解,有解,則直線存在,無解,則直線不存在.

(1)由已知設(shè),,,

因?yàn)辄c(diǎn)均在橢圓,

所以,,

兩式相減得,

,,

;

(2)設(shè),,,

,

,

,

假設(shè)存在使得的面積等于的面積與的面積之和,

,,

設(shè):,,,,

,將之代入,整理得,

,

,

②③聯(lián)立得,,

把⑤代入④得,

化簡得,

由于此方程無解,故所求直線不存在.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了提高生產(chǎn)線的運(yùn)行效率,工廠對生產(chǎn)線的設(shè)備進(jìn)行了技術(shù)改造.為了對比技術(shù)改造后的效果,采集了生產(chǎn)線的技術(shù)改造前后各20次連續(xù)正常運(yùn)行的時(shí)間長度(單位:天)數(shù)據(jù),并繪制了如下莖葉圖:

(Ⅰ)(1)設(shè)所采集的40個(gè)連續(xù)正常運(yùn)行時(shí)間的中位數(shù),并將連續(xù)正常運(yùn)行時(shí)間超過和不超過的次數(shù)填入下面的列聯(lián)表:

超過

不超過

改造前

改造后

試寫出,,的值;

2)根據(jù)(1)中的列聯(lián)表,能否有的把握認(rèn)為生產(chǎn)線技術(shù)改造前后的連續(xù)正常運(yùn)行時(shí)間有差異?

附:

0.050

0.010

0.001

3.841

6.635

10.828

(Ⅱ)工廠的生產(chǎn)線的運(yùn)行需要進(jìn)行維護(hù).工廠對生產(chǎn)線的生產(chǎn)維護(hù)費(fèi)用包括正常維護(hù)費(fèi)、保障維護(hù)費(fèi)兩種對生產(chǎn)線設(shè)定維護(hù)周期為天(即從開工運(yùn)行到第天()進(jìn)行維護(hù).生產(chǎn)線在一個(gè)生產(chǎn)周期內(nèi)設(shè)置幾個(gè)維護(hù)周期,每個(gè)維護(hù)周期相互獨(dú)立.在一個(gè)維護(hù)周期內(nèi),若生產(chǎn)線能連續(xù)運(yùn)行,則不會產(chǎn)生保障維護(hù)費(fèi);若生產(chǎn)線不能連續(xù)運(yùn)行,則產(chǎn)生保障維護(hù)費(fèi).經(jīng)測算,正常維護(hù)費(fèi)為0.5萬元次;保障維護(hù)費(fèi)第一次為0.2萬元周期,此后每增加一次則保障維護(hù)費(fèi)增加0.2萬元.現(xiàn)制定生產(chǎn)線一個(gè)生產(chǎn)周期(以120天計(jì))內(nèi)的維護(hù)方案:,2,3,4.以生產(chǎn)線在技術(shù)改造后一個(gè)維護(hù)周期內(nèi)能連續(xù)正常運(yùn)行的頻率作為概率,求一個(gè)生產(chǎn)周期內(nèi)生產(chǎn)維護(hù)費(fèi)的分布列及期望值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】四個(gè)同樣大小的球,,兩兩相切,點(diǎn)是球上的動(dòng)點(diǎn),則直線與直線所成角的正弦值的取值范圍為( ).

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】國際上通常用年齡中位數(shù)指標(biāo)作為劃分國家或地區(qū)人口年齡構(gòu)成的標(biāo)準(zhǔn):年齡中位數(shù)在20歲以下為年輕型人口;年齡中位數(shù)在2030歲為成年型人口;年齡中位數(shù)在30歲以上為老齡型人口.

如圖反映了我國全面放開二孩政策對我國人口年齡中位數(shù)的影響.據(jù)此,對我國人口年齡構(gòu)成的類型做出如下判斷:①建國以來直至2000年為成年型人口;②從2010年至2020年為老齡型人口;③放開二孩政策之后我國仍為老齡型人口.其中正確的是(

A.②③B.①③C.D.①②

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】現(xiàn)有甲,乙兩種不透明充氣包裝的袋裝零食,每袋零食甲隨機(jī)附贈玩具,中的一個(gè),每袋零食乙從玩具,中隨機(jī)附贈一個(gè).記事件:一次性購買袋零食甲后集齊玩具,;事件:一次性購買袋零食乙后集齊玩具,.

1)求概率,

2)已知,其中,為常數(shù),求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在等比數(shù)列中,已知設(shè)數(shù)列的前n項(xiàng)和為,且

1)求數(shù)列通項(xiàng)公式;

2)證明:數(shù)列是等差數(shù)列;

3)是否存在等差數(shù)列,使得對任意,都有?若存在,求出所有符合題意的等差數(shù)列;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖是九江市20194月至20203月每月最低氣溫與最高氣溫(℃)的折線統(tǒng)計(jì)圖:已知每月最低氣溫與最高氣溫的線性相關(guān)系數(shù)r0.83,則下列結(jié)論錯(cuò)誤的是(

A.每月最低氣溫與最高氣溫有較強(qiáng)的線性相關(guān)性,且二者為線性正相關(guān)

B.月溫差(月最高氣溫﹣月最低氣溫)的最大值出現(xiàn)在10

C.912月的月溫差相對于58月,波動(dòng)性更大

D.每月最高氣溫與最低氣溫的平均值在前6個(gè)月逐月增加

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)),曲線的參數(shù)方程為為參數(shù)).

1)求曲線,的普通方程;

2)已知點(diǎn),若曲線交于,兩點(diǎn),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】年上半年,隨著新冠肺炎疫情在全球蔓延,全球超過個(gè)國家或地區(qū)宣布進(jìn)人緊急狀態(tài),部分國家或地區(qū)直接宣布“封國”或“封城”,隨著國外部分活動(dòng)進(jìn)入停擺,全球經(jīng)濟(jì)缺乏活力,一些企業(yè)開始倒閉,下表為年第一季度企業(yè)成立年限與倒閉分布情況統(tǒng)計(jì)表:

企業(yè)成立年份

2019

2018

2017

2016

2015

企業(yè)成立年限

1

2

3

4

5

倒閉企業(yè)數(shù)量(萬家)

5.28

4.72

3.58

2.70

2.15

倒閉企業(yè)所占比例

21.4%

19.1%

14.5%

10.9%

8.7%

1)由所給數(shù)據(jù)可用線性回歸模型擬合的關(guān)系,請用相關(guān)系數(shù)加以說明;

2)建立關(guān)于的回歸方程,預(yù)測年成立的企業(yè)中倒閉企業(yè)所占比例.

參考數(shù)據(jù):,,,

相關(guān)系數(shù),樣本的最小二乘估計(jì)公式為,.

查看答案和解析>>

同步練習(xí)冊答案