19.如圖,已知圓內(nèi)接四邊形ABCD滿足AC=BD,過C點的圓的切線與BA的延長線交于E點.
(1)求證:∠ACE=∠BCD;
(2)若BE=9,CD=1,求BC的長.

分析 (1)運用等弧所對的圓周角相等和圓的弦切角定理,即可得證;
(2)由圓的弦切角定理和三角形的相似的判定定理可得△BEC∽△CBD,由性質(zhì)定理計算即可得到所求BC的長.

解答 解:(1)證明:由AC=BD
即有弧AC的長等于弧BD的長,
可得∠ABC=∠BCD,
又EC為圓的切線,
可得∠ACE=∠ABC,
即有∠ACE=∠BCD,
(2)解:由EC為圓的切線,
可得∠CDB=∠BCE,
由(1)可得∠ABC=∠BCD,
即有△BEC∽△CBD,
可得$\frac{CD}{BC}$=$\frac{BC}{BE}$,
由BE=9,CD=1,
則BC2=CD•BE=9,
即BC=3.

點評 本題考查圓的弦切角定理和三角形相似的判定定理和性質(zhì)定理的運用,考查推理和運算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.若將函數(shù)f(x)=x6表示為f(x)=a0+a1(1+x)+a2(1+x)2+…+a6(1+x)6,其中a1,a2,…,a6為實數(shù),則a3等于-20.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.設(shè)a∈Z,且0≤a<13,若512016+a能被13整除,則a=12.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.若函數(shù)g(x)=$\frac{2}{x}$+x2+2alnx在[1,2]上是減函數(shù),則a的取值范圍為( 。
A.(-∞,0)B.(-∞,0]C.(-∞,-$\frac{7}{2}$]D.(-∞,-$\frac{7}{2}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知函數(shù)f(x)=$\frac{1}{2}$x2+alnx(a∈R).
(1)當(dāng)a=-2時,求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若當(dāng)x>1時,不等式f(x)<x2-$\frac{1}{2}$恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知函數(shù)f(x)=|x-a|+|${\frac{1}{2}$x+1|的最小值為2.
(Ⅰ)求實數(shù)a的值;
(Ⅱ)若a>0,求不等式f(x)≤4的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.在極坐標(biāo)系中,已知曲線C1:ρ=2cosθ,將曲線C1上的點向左平移一個單位,然后縱坐標(biāo)不變,橫坐標(biāo)伸長到原來的2倍,得到曲線C,又已知直線l:$\left\{\begin{array}{l}{x=\sqrt{2}+tcos\frac{π}{4}}\\{y=tsin\frac{π}{4}}\end{array}\right.$(t是參數(shù)),且直線l與曲線C交于A,B兩點.
(1)求曲線C的直角坐標(biāo)方程,并說明它是什么曲線;
(2)設(shè)定點P($\sqrt{2}$,0),求|PA|+|PB|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.?dāng)S一次均勻的正六面體骰子,則出現(xiàn)奇數(shù)點的概率是( 。
A.$\frac{1}{2}$B.$\frac{2}{3}$C.$\frac{5}{6}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知復(fù)數(shù)$\frac{a+i}{1-i}$=i,則實數(shù)a=( 。
A.-1B.-2C.1D.2

查看答案和解析>>

同步練習(xí)冊答案