7.若函數(shù)g(x)=$\frac{2}{x}$+x2+2alnx在[1,2]上是減函數(shù),則a的取值范圍為(  )
A.(-∞,0)B.(-∞,0]C.(-∞,-$\frac{7}{2}$]D.(-∞,-$\frac{7}{2}$)

分析 可求導(dǎo)數(shù)得到$g′(x)=-\frac{2}{{x}^{2}}+2x+\frac{2a}{x}$,根據(jù)條件即可得出$a<-{x}^{2}+\frac{1}{x}$在x∈[1,2]上恒成立,而可設(shè)$f(x)=-{x}^{2}+\frac{1}{x}$,通過求導(dǎo)數(shù),根據(jù)導(dǎo)數(shù)符號即可判斷f(x)在[1,2]上的單調(diào)性,根據(jù)單調(diào)性即可求出f(x)在[1,2]上的最小值,從而求出a的取值范圍.

解答 解:$g′(x)=-\frac{2}{{x}^{2}}+2x+\frac{2a}{x}$;
∵g(x)在[1,2]上是減函數(shù);
∴$-\frac{2}{{x}^{2}}+2x+\frac{2a}{x}<0$;
∴$a<-{x}^{2}+\frac{1}{x}$在x∈[1,2]上恒成立;
設(shè)$f(x)=-{x}^{2}+\frac{1}{x}$,則$f′(x)=-2x-\frac{1}{{x}^{2}}<0$;
∴f(x)在[1,2]上單調(diào)遞減;
∴f(x)在[1,2]上的最小值為f(2)=$-\frac{7}{2}$;
∴$a<-\frac{7}{2}$;
即a的取值范圍為$(-∞,-\frac{7}{2})$.
故選:D.

點(diǎn)評 考查函數(shù)單調(diào)性和函數(shù)導(dǎo)數(shù)符號的關(guān)系,以及基本初等函數(shù)導(dǎo)數(shù)的求法,不等式的性質(zhì),根據(jù)函數(shù)單調(diào)性求函數(shù)在閉區(qū)間上的最值的方法.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知復(fù)數(shù)z=($\frac{1+i}{1-i}$)2014,則在復(fù)平面內(nèi)z-i所對應(yīng)的點(diǎn)位于( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.某次測驗有3個選擇題,每個題有A,B,C,D共4個選項,某考生對每個題都有隨機(jī)選一個選項作為答案,則他第一題不選A和C,且3個題的選項互不相同的概率為$\frac{3}{16}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.函數(shù)y=Asin(ωx+φ)的圖象相鄰的最高點(diǎn)和最低點(diǎn)的坐標(biāo)分別為($\frac{5π}{12}$,3),($\frac{11π}{12}$,-3),函數(shù)的解析式是f(x)=3sin(2x-$\frac{π}{3}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.設(shè)sin2α=-$\sqrt{3}$cosα,α∈(-$\frac{π}{2}$,0),則tan2α的值是(  )
A.$\sqrt{3}$B.$-\sqrt{3}$C.$\frac{{\sqrt{3}}}{3}$D.$-\frac{{\sqrt{3}}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.函數(shù)f(x)=x2+2(a+2)x+4lnx的圖象上是否存在兩點(diǎn)A(x1,y1)和B(x2,y2)使f′($\frac{{x}_{1}+{x}_{2}}{2}$)=$\frac{{y}_{1}-{y}_{2}}{{x}_{1}-{x}_{2}}$成立?若存在,請求出x0的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.如圖,已知圓內(nèi)接四邊形ABCD滿足AC=BD,過C點(diǎn)的圓的切線與BA的延長線交于E點(diǎn).
(1)求證:∠ACE=∠BCD;
(2)若BE=9,CD=1,求BC的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知平面向量$\overrightarrow a$與$\overrightarrow b$的夾角為$\frac{π}{3}$,且|$\overrightarrow b}$|=1,|${\overrightarrow a$+2$\overrightarrow b}$|=2$\sqrt{3}$,則|$\overrightarrow a}$|=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知△ABC的頂點(diǎn)A(1,3),AB邊上的中線CM所在直線方程為2x-3y+2=0,AC邊上的高BH所在直線方程為2x+3y-9=0.求:
(1)直線BC的方程;
(2)△ABC的面積.

查看答案和解析>>

同步練習(xí)冊答案