15.已知三角形ABC中,AB=AC,AC邊上的中線長為3,當三角形ABC的面積最大時,AB的長為( 。
A.$2\sqrt{5}$B.3$\sqrt{6}$C.2$\sqrt{6}$D.3$\sqrt{5}$

分析 設AB=AC=2x,三角形的頂角θ,則由余弦定理求得cosθ的表達式,進而根據(jù)同角三角函數(shù)基本關系求得sinθ,最后根據(jù)三角形面積公式表示出三角形面積的表達式,根據(jù)一元二次函數(shù)的性質(zhì)求得面積的最大值時的x即可.

解答 解:設AB=AC=2x,AD=x.
設三角形的頂角θ,則由余弦定理得cosθ=$\frac{(2x)^{2}+{x}^{2}-9}{2×2x×x}$=$\frac{5{x}^{2}-9}{4{x}^{2}}$,
∴sinθ=$\sqrt{1-co{s}^{2}θ}$=$\frac{\sqrt{144-9({x}^{2}-5)^{2}}}{4{x}^{2}}$,
 根據(jù)公式三角形面積S=$\frac{1}{2}$absinθ=$\frac{1}{2}$×2x•2x•$\frac{\sqrt{144-9({x}^{2}-5)^{2}}}{4{x}^{2}}$=$\frac{\sqrt{144-9({x}^{2}-5)^{2}}}{2}$,
∴當 x2=5時,三角形面積有最大值.此時x=$\sqrt{5}$.
AB的長:2$\sqrt{5}$.
故選:A.

點評 本題主要考查函數(shù)最值的應用,根據(jù)條件設出變量,根據(jù)三角形的面積公式以及三角函數(shù)的關系是解決本題的關鍵,利用二次函數(shù)的性質(zhì)即可求出函數(shù)的最值,考查學生的運算能力.運算量較大.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

5.若數(shù)列{an}的前n項和為Sn=3×2n+1,則數(shù)列{an}的通項公式是an=$\left\{\begin{array}{l}{7,n=1}\\{3×{2}^{n-1},n≥2}\end{array}\right.$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.某產(chǎn)品共有100件,其中一、二、三、四等品的個數(shù)比為4:3:2:1,采用分層抽樣的方法抽取一個樣本,若從一等品中抽取8件,從三等品和四等品中抽取的個數(shù)分別為a,b,則直線ax+by+8=0上的點到原點的最短距離為$\frac{8\sqrt{5}}{5}$..

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.集合A=$\{x|\left\{\begin{array}{l}3x+6>0\\ 2x-10<0\end{array}\right._{\;}^{\;}\},B=\{x|m+1≤x≤2m-1\}$,若B⊆A求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.已知集合A={x|3≤x<6},B={x|2<x<9}.
(1)分別求A∩B,A∪B;
(2)已知C={x|a<x<a+1},若C⊆B,求實數(shù)a的取值集合.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

20.設不等式ax2+bx+c<0的解集是(-∞,1)∪(3,+∞),則不等式cx2+bx+a>0的解集是($\frac{1}{3}$,1).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.下列結論中不正確的( 。
A.logab•logbc•logca=1B.函數(shù)f(x)=ex滿足f(a+b)=f(a)•f(b)
C.函數(shù)f(x)=ex滿足f(a•b)=f(a)•f(b)D.若xlog34=1,則4x+4-x=$\frac{10}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

4.復數(shù) z=$\frac{3-i}{1-2i}$的共軛復數(shù)是1-i.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.已知集合A={x|-2≤x≤7},B={x|m-1≤x≤2m+1},若A∪B=A,求實數(shù)m的取值范圍.

查看答案和解析>>

同步練習冊答案