已知
i
,
j
,
k
表示共面的三個(gè)單位向量,
i
j
,那么(
i
+
k
)•(
j
+
k
)的取值范圍是( 。
A、[-3,3]
B、[-2,2]
C、[
2
-1,
2
=1]
D、[1-
2
,1+
2
]
考點(diǎn):平面向量數(shù)量積的運(yùn)算
專題:計(jì)算題,平面向量及應(yīng)用
分析:運(yùn)用向量垂直的條件:數(shù)量積為0,及向量模的公式,和向量數(shù)量積的定義,結(jié)合余弦函數(shù)的值域,即可計(jì)算得到.
解答: 解:由
i
j
,則
i
j
=0,
i
,
j
為單位向量,則|
i
+
j
|=
i
2
+
j
2
+2
i
j
=
2
,
則(
i
+
k
)•(
j
+
k
)=
i
j
+(
i
+
j
k
+
k
2

=(
i
+
j
k
+1=|
i
+
j
|cos<
i
+
j
,
k
>+1=
2
cos<
i
+
j
,
k
>+1,
由-1≤cos<
i
+
j
,
k
>≤1,
則(
i
+
k
)•(
j
+
k
)的取值范圍是[1-
2
,1+
2
].
故選D.
點(diǎn)評(píng):本題考查平面向量的數(shù)量積的定義和性質(zhì),考查向量垂直的條件,考查余弦函數(shù)的值域,考查運(yùn)算能力,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,且bcosC=(3a-c)cosB.
(1)求sinB的值;
(2)若b=2,且a=c,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列函數(shù)為偶函數(shù)的是(  )
A、y=sinx
B、y=ln(
x2+1
-x)
C、y=ex
D、y=ln
x2+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)a=log 
1
3
5,b=3 
1
5
,c=(
1
5
0.3,則有( 。
A、a<b<c
B、c<a<b
C、a<c<b
D、b<c<a

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖
e1
,
e2
為互相垂直的兩個(gè)單位向量,則|
a
+
b
|=( 。
A、20
B、
10
C、2
5
D、
15

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知向量
a
=(
3
,sinθ)與
b
=(1,cosθ)互相平行,其中θ∈(0,
π
2
).
(1)求sinθ和cosθ的值;
(2)求f(x)=sin(2x+θ)的最小正周期和單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如果f(x)=
1|x|≤1
sinx|x|>1
,那么f[f(2)]=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=
x+1
x
的定義域是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x3+ax2圖象上一點(diǎn)P(1,b)處的切線斜率為-3,g(x)=x3+
t-6
2
x2-(t+1)x+3(t>0),
(1)求a、b的值;
(2)當(dāng)x∈[-1,4]時(shí),求f(x)的值域;
(3)當(dāng)x∈[1,4]時(shí),不等式f(x)≤g(x)恒成立,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案