5.如圖1,在矩形ABCD中,點(diǎn)E為邊AD上靠近D的三等分點(diǎn),點(diǎn)F為邊CD的中點(diǎn),AB=AE=4,現(xiàn)將△ABE沿BE邊折至△PBE位置,且平面PBE⊥平面BCDE.
(Ⅰ)求證:平面PBE⊥平面PEF;
(Ⅱ)求四棱錐P-BCFE的體積.

分析 (1)利用折疊前的圖形可判斷BE⊥EF,由面面垂直的性質(zhì)可得EF⊥平面PBE,再由線面垂直得面面垂直;
(2)過(guò)P做PO⊥BE,由面面垂直的性質(zhì)及線面垂直的判定得到PO⊥平面BCDE,即PO為四棱錐P-BCFE的高.把S四邊形BCFE轉(zhuǎn)化為S矩形ABCD-S△ABE-S△DEF,求值后代入棱錐的體積公式得答案.

解答 (1)證明:∵點(diǎn)E為邊AD上靠近D的三等分點(diǎn),點(diǎn)F為邊CD的中點(diǎn),AB=AE=4,
∴$AB=AE=\frac{2}{3}AD=4$,
∴DE=$\frac{1}{3}$AD=$\frac{1}{2}$AB=2,
∵F為CD邊的中點(diǎn),
∴DE=DF,又DE⊥DF,
∴∠DEF=45°,
同理∠AEB=45°,
∴∠BEF=45°,即EF⊥BE,
又平面ABE⊥平面BCDE,平面ABE∩平面BCDE=BE,
∴EF⊥平面PBE,
EF?平面PEF,
∴平面PBE⊥平面PEF;如圖,
在Rt△DEF中,∵ED=DF,∴∠DEF=45°.
在Rt△ABE中,∵AE=AB,∴∠AEB=45°,
∴∠BEF=90°,則EF⊥BE.
∵平面PBE⊥平面BCDE,且平面PBE∩平面BCDE=BE,
∴EF⊥平面PBE,
∵EF?平面PEF,∴平面PBE⊥平面PEF;
(2)解:過(guò)P做PO⊥BE,
∵PO?平面PBE,平面PBE⊥平面BCDE且平面PBE∩平面BCDE=BE,
∴PO⊥平面BCDE,
四棱錐P-BCFE的高h(yuǎn)=PO=$2\sqrt{2}$.
S四邊形BCFE=S矩形ABCD-S△ABE$-{S}_{△DEF}=6×4-\frac{1}{2}×4×4-\frac{1}{2}×2×2=14$,
則${V}_{P-BCFE}=\frac{1}{3}{S}_{四邊形BCFE}•h$=$\frac{1}{3}×14×2\sqrt{2}=\frac{28\sqrt{2}}{3}$.

點(diǎn)評(píng) 本題主要考查空間線面關(guān)系、幾何體的體積等知識(shí),考查數(shù)形結(jié)合、化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,以及空間想象能力、推理論證能力和運(yùn)算求解能力,是中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.已知A(-2,3,4),在y軸上求一點(diǎn)B,使|AB|=3$\sqrt{5}$,則點(diǎn)B的坐標(biāo)為(0,8,0)或(0,2,0) .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.已知$sin(\frac{π}{6}-α)=\frac{4}{5},cos(α+\frac{π}{3})$的值是(  )
A.$\frac{3}{5}$B.$-\frac{3}{5}$C.$\frac{4}{5}$D.$-\frac{4}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.若函數(shù)y=ax-b+1的圖象恒過(guò)定點(diǎn)(1,2),則b=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.某少數(shù)民族的刺繡有著悠久的歷史,圖(1)、(2)、(3)、(4)為她們刺繡最簡(jiǎn)單的四個(gè)圖案,圖案都是由小正方形構(gòu)成,小正方形數(shù)越多刺繡越漂亮;現(xiàn)按同樣的擺放規(guī)律刺繡,設(shè)第n個(gè)圖形包含an個(gè)小正方形.
(1)求出a5的值;
(2)利用歸納推理歸納出an+1與an之間的關(guān)系式,并根據(jù)你得到的關(guān)系式求出an的表達(dá)式;
(3)求$\frac{1}{a_1}+\frac{1}{{{a_2}-1}}+…+\frac{1}{{{a_n}-1}}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.如果輸入n=2,那么執(zhí)行圖中算法后的輸出結(jié)果是( 。
A.2B.3C.4D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知ABCD是矩形,AD=2AB,E,F(xiàn)分別是線段AB,BC的中點(diǎn),PA⊥平面ABCD.
(1)求證:DF⊥平面PAF;
(2)若在棱PA上存在一點(diǎn)G,使得EG∥平面PFD,求$\frac{AG}{AP}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.某小說(shuō)網(wǎng)站為了了解讀者群對(duì)網(wǎng)絡(luò)小說(shuō)的閱讀情況,隨機(jī)抽取了100名讀者進(jìn)行調(diào)查,具體情況如表:
 日均閱讀小說(shuō)時(shí)間(分鐘) (0,30](30,60] (60,90](90,120] (120,150](150,+∞) 
 人數(shù)15  2124  28 4
將日均閱讀小說(shuō)高于1.5個(gè)小時(shí)的讀者稱為“小說(shuō)迷”.
(1)根據(jù)已知條件完成下面的2×2列聯(lián)表,根據(jù)此資料,你是否有90%的把握認(rèn)為“小說(shuō)迷”與性別有關(guān)?
  非小說(shuō)迷小說(shuō)迷 合計(jì)
 男  1548 
 女   
 合計(jì)   
(2)將上述調(diào)查所得到的頻率視為概率,從該網(wǎng)站的讀者(數(shù)量很大)中抽取3人,記被抽取的3人中的“小說(shuō)迷”人數(shù)為X,若每次抽取結(jié)果是相互獨(dú)立的,求X的分布列和期望.
附:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$.
 P(K2≥k0 0.500.25  0.10 0.050.025  0.0100.005  0.001
 k0 0.455 1.3232.706 3.841  5.0246.635  7.87910.828 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.PM2.5是指空氣中直徑小于或等于2.5微米的顆粒物(也稱為入肺顆粒物),為了探究車流量與PM2.5的濃度失分相關(guān),現(xiàn)采集某城市周一至周五時(shí)間段車流量與PM2.5的數(shù)據(jù)如表”
 時(shí)間 周一周二 周三  周四 周五
 車流量x(萬(wàn)輛) 50 51 54 57 58
 PM2.5的濃度y(微克/立方米) 69 70 74 7879
(Ⅰ)根據(jù)如表數(shù)據(jù),請(qǐng)?jiān)谧鴺?biāo)系中畫(huà)出散點(diǎn)圖;
(Ⅱ)根據(jù)表格中數(shù)據(jù),用最小二乘法求出y關(guān)于x的線性回歸方程$\stackrel{∧}{y}$=$\stackrel{∧}$x+$\stackrel{∧}{a}$;
(Ⅲ)若周六同一時(shí)間段車流量是30萬(wàn)輛,試根據(jù)(Ⅱ)求出的線性回歸方程預(yù)測(cè)此時(shí)PM2.5的濃度為多少(保留整數(shù))?
(相關(guān)公式:$\stackrel{∧}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{x}_{i}^{2}-n{\overline{x}}^{2}}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}$$\overline{x}$)

查看答案和解析>>

同步練習(xí)冊(cè)答案