分析 (1)利用賦值法結(jié)合條件進(jìn)行轉(zhuǎn)化求解證明即可.
(2)根據(jù)抽象函數(shù)的關(guān)系進(jìn)行轉(zhuǎn)化,結(jié)合函數(shù)單調(diào)性進(jìn)行求解即可.
解答 解:(1)令x=0,y=0得f(0)=$\frac{f(0)}{f(0)}$=1,
∴f(0)=1…(1分)
令x=a+b,y=b,則x-y=a,
又∵f(x-y)=$\frac{f(x)}{f(y)}$,
∴f(a+b)=f(a)•f(b)…(4分)
∴f(x+y)=f(x)•f(y)…(5分),
(2)由(1)知f(x2)•f(10)=f(x2+10),
∴$\frac{{f({x^2})•f(10)}}{f(7x)}$=$\frac{f({x}^{2}+10)}{f(7x)}$=f(x2-7x+10),
又∵f(-1)=3,∴9=3×3=f(-1)×f(-1)=f(-2)…(8分)
又∵$\frac{{f({x^2})•f(10)}}{f(7x)}$≤9.
∴f(x2-7x+10)≤f(-2)…(9分)
又∵f(x)在R上單調(diào)遞減,
∴x2-7x+10≥-2…(10分),
解得:x≤3或x≥4,即原不等式的解集為(-∞,3)∪(4,+∞)…(12分)
點(diǎn)評(píng) 本題主要考查抽象函數(shù)的應(yīng)用,利用條件結(jié)合賦值法是解決本題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | ②③④ | B. | ①④ | C. | ②③ | D. | ①②③④ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (-∞,0)∪(4,+∞) | B. | (-∞,2)∪(4,+∞) | C. | (2,4) | D. | (0,4) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2017屆江西吉安一中高三上學(xué)期段考一數(shù)學(xué)(文)試卷(解析版) 題型:解答題
選修4-5:不等式選講
已知函數(shù).
(1)解不等式;
(2)對(duì)任意,都有成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com