分析 由條件根據(jù)函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,正弦函數(shù)的圖象的對稱性,求得φ的最小值.
解答 解:把函數(shù)y=sinx+$\sqrt{3}$cosx=2sin(x+$\frac{π}{3}$)的圖象向左平移φ>0個單位,
所得的圖象對應的函數(shù)的解析式為y=2sin(x+$\frac{π}{3}$+φ),
再根據(jù)所得圖象關(guān)于y軸對稱,可得$\frac{π}{3}$+φ=kπ+$\frac{π}{2}$,k∈z,可得:φ=kπ+$\frac{π}{6}$,k∈z,
則m的最小值為$\frac{π}{6}$,
故答案為:$\frac{π}{6}$.
點評 本題主要考查函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,正弦函數(shù)的圖象的對稱性,屬于基礎(chǔ)題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
組別 | 理科 | 文科 | ||
性別 | 男生 | 女生 | 男生 | 女生 |
人數(shù) | 3 | 3 | 3 | 1 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | y=±$\sqrt{2}$x | B. | y=±$\sqrt{3}$x | C. | y=±2x | D. | y=±$\sqrt{5}$x |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 當$\overrightarrow$≠0時成立 | B. | 當$\overrightarrow{c}$≠0時成立 | C. | 總成立 | D. | 當$\overrightarrow{a}$≠0時成立 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\sqrt{2}$ | B. | $\frac{3}{2}$ | C. | 2$\sqrt{2}$ | D. | 2 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com