20.已知函數(shù)$f(x)=2sin?xcos?x-2\sqrt{3}{cos^2}?x+\sqrt{3}({?>0})$,若函數(shù)f(x)的圖象與直線y=a(a為常數(shù))相切,并且切點(diǎn)的橫坐標(biāo)依次成公差為π的等差數(shù)列.
(1)求f(x)的表達(dá)式及a的值;
(2)將函數(shù)f(x)的圖象向左平移$\frac{π}{3}$個單位,再向上平移1個單位,得到函數(shù)y=g(x),求其單調(diào)增區(qū)間.

分析 (1)把式子化成一個三角函數(shù)的形式,即可求出最小正周期,利用周期公式可求ω,即可求得f(x)的表達(dá)式及a的值.
(2)再根據(jù)圖象的平移可求出函數(shù)y=g(x)的解析式,利用正弦函數(shù)的圖象和性質(zhì)即可求出單調(diào)增區(qū)間.

解答 解:(1)由題意得$f(x)=2sinωxcosωx-2\sqrt{3}{cos^2}ωx+\sqrt{3}=2sin({2ωx-\frac{π}{3}})$,
∵函數(shù)f(x)的圖象與直線y=a(a為常數(shù))相切,并且切點(diǎn)的橫坐標(biāo)依次成公差為π的等差數(shù)列,可知函數(shù)的最小正周期為π,
∴$\frac{2π}{2ω}=π$,
∴ω=1,∴$f(x)=2sin({2x-\frac{π}{3}})$,∴a=±2.
(2)將函數(shù)f(x)的圖象向左平移$\frac{π}{3}$個單位,得到$y=2sin({2x+\frac{π}{3}})$,
再向上平移1個單位,得到$y=2sin({2x+\frac{π}{3}})+1$,即$g(x)=2sin({2x+\frac{π}{3}})+1$,
由$2kπ-\frac{π}{2}≤2x+\frac{π}{3}≤2kπ+\frac{π}{2},k∈Z$,整理得$kπ-\frac{5π}{12}≤x≤kπ+\frac{π}{12},k∈Z$,
所以函數(shù)y=g(x)的單調(diào)增區(qū)間是$[{kπ-\frac{5π}{12},kπ+\frac{π}{12}}],k∈Z$.

點(diǎn)評 本題主要考查了三角函數(shù)的化簡求值,三角函數(shù)的圖象與性質(zhì),函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,三角函數(shù)中的恒等變換應(yīng)用,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.在正方體ABCD-A1B1C1D1中,AA1=a,E,F(xiàn)分別是BC,DC的中點(diǎn),則異面直線AD1與EF所成角為( 。
A.90°B.60°C.45°D.30

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.若直線y=x+b與曲線x=$\sqrt{1-{y^2}}$恰有一個公共點(diǎn),則b的取值范圍是( 。
A.$[{-\sqrt{2},\sqrt{2}}]$B.$[{-1,\sqrt{2}}]$C.$(-1,1]∪\{\sqrt{2}\}$D.$(-1,1]∪\{-\sqrt{2}\}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.橢圓$\frac{x^2}{13}+\frac{y^2}{4}=1$的焦點(diǎn)為F1,F(xiàn)2,點(diǎn)P是橢圓上的動點(diǎn),當(dāng)∠F1PF2為鈍角時,點(diǎn)P的橫坐標(biāo)的取值范圍是$(-\frac{{\sqrt{65}}}{3},\frac{{\sqrt{65}}}{3})$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.班主任為了對本班學(xué)生的考試成績進(jìn)行分析,決定從全班25位女同學(xué),15位男同學(xué)中隨機(jī)抽取一個容量為8的樣本進(jìn)行分析.
(1)如果按性別比例分層抽樣,男、女生各抽取多少位才符合抽樣要求?
(2)隨機(jī)抽出8位,他們的物理、化學(xué)分?jǐn)?shù)對應(yīng)如下表:
學(xué)生編號12345678
物理分?jǐn)?shù)x6065707580859095
化學(xué)分?jǐn)?shù)y7277808488909395
根據(jù)上表數(shù)據(jù)用變量y與x的散點(diǎn)圖說明化學(xué)成績y與物理成績x之間是否具有線性相關(guān)性?如果具有線性相關(guān)性,求y與x的線性回歸方程(系數(shù)精確到0.01);如果不具有線性相關(guān)性,請說明理由.
參考公式:$b=\frac{{\sum_{i=1}^n{({x_i}-\overline x)({y_i}-\overline y)}}}{{\sum_{i=1}^n{{{({x_i}-\overline x)}^2}}}}$,a=$\overline{y}$-b$\overline{x}$;  參考數(shù)據(jù):$\overline{x}$=77.5,$\overline{y}$=84.875.
$\sum_{i=1}^{8}$(xi-x)2=1050,$\sum_{i=1}^{8}$(yi-$\overline{y}$)2≈457,$\sum_{i=1}^{8}$(xi-$\overline{x}$)(yi-$\overline{y}$)≈688.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知函數(shù)f(x)是定義在(-1,1)上的奇函數(shù),
(1)若函數(shù)f(x)在區(qū)間(-1,0)上有最大值2,最小值-4,求函數(shù)f(x)在區(qū)間(0,1)上的最值;(直接寫出結(jié)果,不需要證明)
(2)若函數(shù)f(x)在區(qū)間(0,1)上單調(diào)遞增,試判斷函數(shù)f(x)在區(qū)間(-1,0)上的單調(diào)性并加以證明;
(3)若當(dāng)x∈(0,1)時,f(x)=x2-2x,求函數(shù)f(x)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知函數(shù)f(x)=$\left\{\begin{array}{l}{(\frac{1}{2})^{x},x>0}\\{-{x}^{2}-2x,x≤0}\end{array}\right.$.若函數(shù)g(x)=f(x)-m有3個零點(diǎn),則實(shí)數(shù)m的取值范圍是(0,1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知全集U=R,A={y|y=2x+1},B={x|lnx<0},則A∩B=( 。
A.{x|0<x<1}B.{x|$\frac{1}{2}$<x≤1}C.{x|x<1}D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知數(shù)列{an}的前n項(xiàng)和為Sn,且滿足Sn=(n+1)2-an-2(n∈N*).
(1)令bn+2=an+1-an,證明:{bn}為常數(shù)數(shù)列,并求出{an}的通項(xiàng)公式;
(2)是否存在m∈N*,使得等式am+am+1+am+2=am•am+1•am+2?若存在,求出對應(yīng)的m;若不存在,請說明理由.
(3)若ar,as,at為數(shù)列{an}中的任意三項(xiàng),證明:關(guān)于x的一元二次方程arx2+asx-at=0無有理數(shù)解.

查看答案和解析>>

同步練習(xí)冊答案