經(jīng)市場(chǎng)調(diào)查,某種商品在過(guò)去50天的銷量和價(jià)格均為銷售時(shí)間t(天)的函數(shù),且銷售量近似地滿足f(t)=-2t+200(1≤t≤50,t∈N),前30天價(jià)格為g(x)=
1
2
t+30(1≤t≤30,t∈N),后20天價(jià)格為g(t)=45(31≤t≤50,t∈N).
(1)寫出該種商品的日銷售額S與時(shí)間t的函數(shù)關(guān)系;
(2)求日銷售額S的最大值.
考點(diǎn):根據(jù)實(shí)際問(wèn)題選擇函數(shù)類型
專題:計(jì)算題,應(yīng)用題,函數(shù)的性質(zhì)及應(yīng)用
分析:(1)由題意,S=f(t)•g(t)=
(-2t+200)(12t+30),1≤t≤30,t∈N
45(-2t+200),31≤t≤50,t∈N
;
(2)分別求當(dāng)1≤t≤30時(shí)與當(dāng)31≤t≤50時(shí)的最值,從而求最值.
解答: 解:(1)由題意,
S=f(t)g(t)=
(-2t+200)(12t+30),1≤t≤30,t∈N
45(-2t+200),31≤t≤50,t∈N
;
(2)當(dāng)1≤t≤30時(shí),
S=(-2t+200)(12t+30)
=-24(t2-97.5t-250);
故對(duì)稱軸為x=
97.5
2
>40;
故S在[1,30]上是增函數(shù),
故Smax=S(30)=54600;
當(dāng)31≤t≤50時(shí),
S=45(-2t+200)是[31,50]上的減函數(shù),
故Smax=S(31)=6210;
故日銷售額S的最大值為54600元.
點(diǎn)評(píng):本題考查了函數(shù)在實(shí)際問(wèn)題中的應(yīng)用,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖所示的程序框圖是給出計(jì)算
1
5
+
1
10
+
1
15
+…+
1
2015
的值,則判斷框內(nèi)應(yīng)填入的條件是( 。
A、i≤403?
B、i<403?
C、i≤404?
D、i>404?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

對(duì)于給定的任意實(shí)數(shù)x,y,z(z≠0且z≠6),記xOy平面上點(diǎn)P(x,y)到三點(diǎn)A(z,z)、B(6-z,z-6)、C(0,0)的三個(gè)距離中的最大值為g(x,y,z),則g(x,y,z)的最小值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知奇函數(shù)f(x)在x>0時(shí),f(x)=
1
3
x3-lnx,則f(x)在[-2,-
1
2
]上的值域?yàn)椋ā 。?/div>
A、[-ln2-
1
24
,-
1
3
]
B、[ln2-
8
3
,-ln2-
1
24
]
C、[ln2-
8
3
,-
1
3
]
D、[-
1
3
,ln2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知直線 l過(guò)點(diǎn)(1,-1),且在兩坐標(biāo)軸上的截距之和為
3
2
,則直線l的力方程為(  )
A、2x-y-3=0
B、2x+y-1=0
C、x-2y-3=0
D、2x+y-1=0或x-2y-3=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合 A={2,-2},B={x|x2-ax+4=0},若A∪B=A,則實(shí)數(shù)a滿足( 。
A、{a|-4<a<4}
B、{a|-2<a<2}
C、{-4,4}
D、{a|-4≤a≤4}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=asinx+bcosx(a,b∈R),?x∈R,恒有f(x)≥f(
π
3
),則
a
b
的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知全集I={0,1,2,3,4},集合M={1,2,3},N={0,3],則(∁IM)∪N=( 。
A、{0,3,4}
B、{0}
C、{0,1,2,3}
D、{0,1,2,3,4}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

拋物線x=4y2的準(zhǔn)線方程是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案