4.(文科)設函數(shù)$f(x)=\left\{\begin{array}{l}x,x<1\\{x^3}-\frac{1}{x}+1,x≥1\end{array}\right.$,則$f(\frac{1}{f(2)})$=$\frac{2}{17}$.

分析 利用分段函數(shù)的表達式,逐步求解函數(shù)值即可.

解答 解:設函數(shù)$f(x)=\left\{\begin{array}{l}x,x<1\\{x^3}-\frac{1}{x}+1,x≥1\end{array}\right.$,
則f(2)=8-$\frac{1}{2}+1$=$\frac{17}{2}$.
$f(\frac{1}{f(2)})$=f($\frac{2}{17}$)=$\frac{2}{17}$.
故答案為:$\frac{2}{17}$.

點評 本題考查分段函數(shù)的應用,函數(shù)值的求法,考查計算能力.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

14.在平面直角坐標系xOy中,以原點O為極點,x軸的非負半軸為極軸,建立極坐標系,若直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=cosα}\\{y={y}_{0}+tsinα}\end{array}\right.$(t為參數(shù),α為l的傾斜角),曲線E的極坐標方程為ρ=4sinθ.射線θ=β,θ=β+$\frac{π}{4}$,θ=β-$\frac{π}{4}$與曲線E分別交于不同于極點的三點A、B、C.
(1)求證:|OB|+|OC|=$\sqrt{2}$|OA|;
(2)當β=$\frac{7π}{12}$時,直線l過B、C兩點,求y0與α的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.某學生為了測試煤氣灶燒水如何節(jié)省煤氣的問題設計了一個實驗,并獲得了煤氣開關旋鈕旋轉的弧度數(shù)x與燒開一壺水所用時間y的一組數(shù)據(jù),且作了一定的數(shù)據(jù)處理(如表),得到了散點圖(如圖).
$\bar x$$\bar y$$\bar w$$\sum_{i=1}^{10}{({x_i}-\bar x)^2}$$\sum_{i=1}^{10}{({w_i}-\bar w)^2}$$\sum_{i=1}^{10}({x_i}-\bar x)({y_i}-\bar y)$$\sum_{i=1}^{10}({w_i}-\bar w)({y_i}-\bar y)$
1.4720.60.782.350.81-19.316.2
表中${w_i}=\frac{1}{x_i^2},\overline{w}=\frac{1}{10}\sum_{i=1}^{10}{w_i}$.
(1)根據(jù)散點圖判斷,y=a+bx與$y=c+\frac3fbjbor{x^2}$哪一個更適宜作燒水時間y關于開關旋鈕旋轉的弧度數(shù)x的回歸方程類型?(不必說明理由)
(2)根據(jù)判斷結果和表中數(shù)據(jù),建立y關于x的回歸方程;
(3)若旋轉的弧度數(shù)x與單位時間內(nèi)煤氣輸出量t成正比,那么x為多少時,燒開一壺水最省煤氣?
附:對于一組數(shù)據(jù)(u1,v1),(u2,v2),(u3,v3),…,(un,vn),其回歸直線v=α+βu的斜率和截距的最小二乘估計分別為$\hat β=\frac{{\sum_{i=1}^n{({v_i}-\bar v)({u_i}-\bar u)}}}{{\sum_{i=1}^n{{{({u_i}-\bar u)}^2}}}},\hat α=\bar v-\hat β\bar u$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.在銳角△ABC中,角A,B,C所對的邊分別為a,b,c,且$\overrightarrow{m}$=($\sqrt{3}$,2sinA),$\overrightarrow{n}$=(c,a)若$\overrightarrow{m}∥\overrightarrow{n}$
(Ⅰ)求角C的大;
(Ⅱ)若c=$\sqrt{7}$,且△ABC的面積為$\frac{3\sqrt{3}}{2}$,求a+b的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.《九章算術》是我國古代內(nèi)容極為豐富的數(shù)學名著,書中將底面為直角三角形,且側棱與底面垂直的棱柱稱為塹堵,將底面為矩形的棱臺稱為芻童.在如圖所示的塹堵ABM-DCP與芻童的組合體中AB=AD,A1B1=A1D1.棱臺體積公式:V=$\frac{1}{3}$(S′+$\sqrt{S′S}$+S)h,其中S′,S分別為棱臺上、下底面面積,h為棱臺高.
(Ⅰ)證明:直線BD⊥平面MAC;
(Ⅱ)若AB=1,A1D1=2,MA=$\sqrt{3}$,三棱錐A-A1B1D1的體積V=$\frac{2\sqrt{3}}{3}$,求該組合體的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.設f(x)=xln x-ax2+(2a-1)x,a∈R.
(1)令g(x)=f′(x),求g(x)的單調(diào)區(qū)間;
(2)已知f(x)在x=1處取得極大值,求正實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.若復數(shù)$\frac{2+ai}{1-i}({a∈R})$是純虛數(shù)(i是虛數(shù)單位),則復數(shù)z=a+(a-3)i在復平面內(nèi)對應的點位于第四象限.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.設a,b∈R,若a>b,則(  )
A.$\frac{1}{a}<\frac{1}$B.ac2>bc2C.2-a<2-bD.lga>lgb

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.若{an}是等差數(shù)列,且a1=-1,公差為-3,則a8等于( 。
A.-7B.-8C.-22D.27

查看答案和解析>>

同步練習冊答案