分析 求得雙曲線的a,b,可得c=2,即有上焦點(diǎn),求出拋物線的焦點(diǎn),解p的方程即可得到所求值.
解答 解:雙曲線$\frac{y^2}{3}-{x^2}=1$的a=$\sqrt{3}$,b=1,
可得c=$\sqrt{{a}^{2}+^{2}}$=2,
即有上焦點(diǎn)為(0,2),
拋物線x2=2py的焦點(diǎn)為(0,$\frac{p}{2}$),
由題意可得$\frac{p}{2}$=2,
解得p=4.
故答案為:4.
點(diǎn)評(píng) 本題考查雙曲線的方程和性質(zhì),主要是焦點(diǎn)的求法,同時(shí)考查拋物線的焦點(diǎn)坐標(biāo),考查運(yùn)算能力,屬于基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $[{0,\frac{π}{6}}]$ | B. | $[{\frac{π}{6},\frac{2π}{3}}]$ | C. | $[{\frac{2π}{3},π}]$ | D. | $[{0,\frac{π}{6}}]$和$[{\frac{2π}{3},π}]$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | ∅ | B. | {-1,0,1} | C. | {0,1,2} | D. | {-1,0,1,2} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
$\overrightarrow{x}$ | $\overrightarrow{y}$ | $\overrightarrow{w}$ | $\sum_{i=1}^{8}$(xi-$\overline{x}$)2 | $\sum_{i=1}^{8}$(wi-$\overline{w}$)2 | $\sum_{i=1}^{8}$(xi-$\overline{x}$)(yi-$\overline{y}$) | $\sum_{i=1}^{8}$(wi-$\overline{w}$)(yi-$\overline{y}$) |
46.6 | 563 | 6.8 | 289.8 | 1.6 | 1469 | 108.8 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com