已知為雙曲線的右焦點,為雙曲線右支上一點,
且位于軸上方,為直線上一點,為坐標原點,已知
,則雙曲線的離心率為                                         
A.B.C.D.
A

分析:先確定M的坐標,再確定P的坐標,代入雙曲線方程,即可求得結(jié)論.
解:由題意,M位于x軸上方
∵||=||,M為直線x=-上一點
∴M(-,

∴四邊形OMPF為菱形
∴P(c-,),即P(,)
代入雙曲線方程可得-=1
化簡可得c2=4a2
∴c=2a,
∴e==2
故選A.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓),其焦距為,若),則稱橢圓為“黃金橢圓”.
(1)求證:在黃金橢圓)中,、、成等比數(shù)列.
(2)黃金橢圓)的右焦點為為橢圓上的
任意一點.是否存在過點、的直線,使軸的交點滿足?若存在,求直線的斜率;若不存在,請說明理由.
(3)在黃金橢圓中有真命題:已知黃金橢圓)的左、右焦點分別是、,以、、為頂點的菱形的內(nèi)切圓過焦點、.試寫出“黃金雙曲線”的定義;對于上述命題,在黃金雙曲線中寫出相關(guān)的真命題,并加以證明.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

雙曲線與橢圓有共同的焦點,點
是雙曲線的漸近線與橢圓的一個交點,求橢圓與雙曲線的標準方程。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

((本小題滿分14分)
已知橢圓的離心率為,且橢圓上一點與橢圓的兩個焦點構(gòu)成的三角形周長為
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)直線與橢圓交于兩點,且以為直徑的圓過橢圓的右頂點,
面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分15分)
已知點,過點作拋物線的切線,切點在第二象限,如圖.(Ⅰ)求切點的縱坐標;
(Ⅱ)若離心率為的橢圓恰好經(jīng)過切點,設(shè)切線交橢圓的另一點為,記切線的斜率分別為,若,求橢圓方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

((本小題滿分12分)
橢圓的兩個焦點F1、F2,點P在橢圓C上,且PF1⊥F1F2,且|PF1|=
(I)求橢圓C的方程。
(II)以此橢圓的上頂點B為直角頂點作橢圓的內(nèi)接等腰直角三角形ABC,這樣的直角三角形是否存在?若存在,請說明有幾個;若不存在,請說明理由。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

橢圓的離心率等于(    ).
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知方程表示橢圓,則的取值范圍為         .

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分13分)
已知橢圓經(jīng)過點,離心率為,動點
(Ⅰ)求橢圓的標準方程;
(Ⅱ)求以O(shè)M為直徑且被直線截得的弦長為2的圓的方程;
(Ⅲ)設(shè)F是橢圓的右焦點,過點F作OM的垂線與以O(shè)M為直徑的圓交于點N,證明線段ON的長為定值,并求出這個定值.

查看答案和解析>>

同步練習冊答案