分析 (1)以A為原點,分別以$\overrightarrow{AD}$、$\overrightarrow{AB}$、$\overrightarrow{AP}$的方向為x軸、y軸、z軸的正方向建立空間直角坐標系.求出相關(guān)點的坐標,通過計算$\overrightarrow{AF}•\overrightarrow{PC}=8+0+(-8)=0$,證明AF⊥PC.
(2)取PC的中點M,連接EM.證明BD∥EM.然后證明BD∥平面PEC.
(3)求出平面PCD的一個法向量.平面PCE的法向量,利用空間向量的數(shù)量積求解銳二面角D-PC-E的余弦值.
解答 (1)證明:依題意,PA⊥平面ABCD,如圖,以A為原點,分別以$\overrightarrow{AD}$、$\overrightarrow{AB}$、$\overrightarrow{AP}$的方向為x軸、y軸、z軸的正方向建立空間直角坐標系.
依題意,可得A(0,0,0),B(0,4,0),C(4,4,0),D(4,0,0),P(0,0,4),E(0,4,2),F(xiàn)(2,0,2).
∵$\overrightarrow{AF}=(2,0,2)$,$\overrightarrow{PC}=(4,4,-4)$,
∴$\overrightarrow{AF}•\overrightarrow{PC}=8+0+(-8)=0$,
∴AF⊥PC.
(2)證明:取PC的中點M,連接EM.
∵M(2,2,2),$\overrightarrow{EM}=(2,-2,0)$,$\overrightarrow{BD}=(4,-4,0)$,
∴$\overrightarrow{BD}=2\overrightarrow{EM}$,
∴BD∥EM.
∵EM?平面PEC,BD?平面PEC,
∴BD∥平面PEC.
(3)解:∵AF⊥PD,AF⊥PC,PD∩PC=P,
∴AF⊥平面PCD,故$\overrightarrow{AF}=(2,0,2)$為平面PCD的一個法向量.
設(shè)平面PCE的法向量為$\overrightarrow n=(x,y,z)$,
∵$\overrightarrow{PC}=(4,4,-4)$,$\overrightarrow{PE}=(0,4,-2)$,
∴$\left\{\begin{array}{l}\overrightarrow n•\overrightarrow{PC}=0\\ \overrightarrow n•\overrightarrow{PE}=0\end{array}\right.$即$\left\{\begin{array}{l}4x+4y-4z=0\\ 4y-2z=0\end{array}\right.$
令y=1,得x=1,z=2,故$\overrightarrow n=(1,1,2)$.
∴$cos<\overrightarrow{AF},\overrightarrow n>=\frac{2+0+4}{{2\sqrt{2}•\sqrt{6}}}=\frac{{\sqrt{3}}}{2}$,
∴銳二面角D-PC-E的余弦值為$\frac{{\sqrt{3}}}{2}$.
點評 本題考查二面角的平面角的求法,直線與平面平行,直線與直線垂直的證明方法,考查空間想象能力以及計算能力.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | [0,3] | B. | [1,4] | C. | [2,5] | D. | [1,7] |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 2 | B. | 3 | C. | 4 | D. | $4\sqrt{2}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
資源 產(chǎn)品 | 資金(萬元) | 場地(平方米) |
A | 2 | 100 |
B | 35 | 50 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com