7.求過點P(-1,5)的圓(x-1)2+(y-2)2=4的切線方程.

分析 由題意可得:圓的圓心與半徑分別為:(1,0);2,再結(jié)合題意設(shè)直線為:kx-y+k+5=0,進(jìn)而由點到直線的距離等于半徑即可得到k,求出切線方程.

解答 解:由圓的一般方程可得圓的圓心與半徑分別為:(1,2);2.
當(dāng)切線的斜率存在,設(shè)切線的斜率為k,則切線方程為:kx-y+k+5=0,
由點到直線的距離公式可得:$\frac{|2k+3|}{\sqrt{{k}^{2}+1}}$=2,
解得:k=-$\frac{5}{12}$,
所以切線方程為:5x+12y-55=0;
當(dāng)切線的斜率不存在時,直線為:x=-1,
滿足圓心(1,2)到直線x=-1的距離為圓的半徑2,
x=-1也是切線方程;
綜上所述,切線方程為5x+12y-55=0或x=-1.

點評 本題主要考查由圓的一般方程求圓的圓心與半徑,以及點到直線的距離公式,容易疏忽斜率不存在的情況.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.在△ABC中,角A、B、C所對的邊分別為a、b、c,角A、B、C的度數(shù)成等差數(shù)列,$b=\sqrt{13}$.
(1)若3sinC=4sinA,求c的值;
(2)求a+c的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.如圖,四邊形ABCD是正方形,PA⊥平面ABCD,EB∥PA,AB=PA=4,EB=2,F(xiàn)為PD的中點.
(1)求證:AF⊥PC;
(2)求證:BD∥平面PEC;
(3)求銳角二面角D-PC-E的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知兩條不同直線m、l,兩個不同平面α、β,下列命題正確的是(  )
A.若l∥α,則l平行于α內(nèi)的所有直線B.若m?α,l?β且l⊥m,則α⊥β
C.若l?β,l⊥α,則α⊥βD.若m?α,l?β且α∥β,則m∥l

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.設(shè)△ABC的內(nèi)角A,B,C所對的邊分別為a,b,c,且$\frac{π}{4}$$<B<\frac{π}{2}$,acosB-bcosA=$\frac{3}{5}$c,則tan2B•tan3A的最大值為-512.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知函數(shù)f(x)=3sin(ωx+φ),g(x)=3cos(ωx+φ),若對任意x∈R,都有f($\frac{π}{6}$+x)=f($\frac{π}{6}$-x),則g($\frac{π}{6}$)=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.一個正三棱柱的側(cè)棱長和底面邊長都相等,它的俯視圖如圖所示,左視圖是一個矩形,棱柱的體積為2$\sqrt{3}$,則這個三棱柱的表面積為(  )
A.2$\sqrt{3}$B.12C.2$\sqrt{3}$+12D.2$\sqrt{3}$+6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知函數(shù)f(x)=alog2x-blog3x+2,若f($\frac{1}{2015}$)=4,則f(2015)=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知向量$\overrightarrow{a}$=(1+sin2x,sinx-cosx),$\overrightarrow$=(1,sinx+cosx),函數(shù)f(x)=$\overrightarrow{a}$•$\overrightarrow$.
(1)求f(x)的最大值及相應(yīng)的x的值;
(2)若f(θ)=$\frac{8}{5}$,求sin4θ的值.

查看答案和解析>>

同步練習(xí)冊答案