1.設(shè)m為實(shí)數(shù),函數(shù)f(x)=2x2+(x-m)|x-m|,h(x)=$\left\{\begin{array}{l}{\frac{f(x)}{x},x≠0}\\{0,x=0}\end{array}\right.$
(1)若f(1)≥4,求m的取值范圍;
(2)若m>0,對(duì)一切x∈[1,2],不等式h(x)≥1恒成立,求正實(shí)數(shù)m的取值范圍.

分析 (1)令x=1代入后對(duì)m的值進(jìn)行討論即可.
(2)轉(zhuǎn)化為二次函數(shù),從而根據(jù)二次函數(shù)的單調(diào)性解出實(shí)數(shù)m的范圍.

解答 解:(1)f(1)=2+(1-m)|1-m|≥4
當(dāng)m>1時(shí),(1-m)(m-1)≥2,無(wú)解;
當(dāng)m≤1時(shí),(1-m)(1-m)≥2,解得m≤1-$\sqrt{2}$.
所以m≤1-$\sqrt{2}$.
(2)①m<1時(shí),x∈[1,2],f(x)=2x2+(x-m)(x-m)=3x2-2mx+m2
h(x)=$\frac{f(x)}{x}≥1$恒成立,∴f(x)≥x恒成立,
即:g(x)=3x2-(2m+1)x+m2≥0
由于y=g(x)的對(duì)稱軸為x=$\frac{2m+1}{6}$<1
故g(x)在[1,2]為單調(diào)遞增函數(shù),
故g(1)≥0,
∴m2-2m+2≥0.
所以m<1.
②當(dāng)1≤m≤2時(shí),h(x)=$\left\{\begin{array}{l}{x-\frac{{m}^{2}}{{x}^{\;}}+2m\;\;\;1≤x≤m}\\{3x+\frac{{m}^{2}}{{x}^{\;}}-2m\;\;m<x≤2}\end{array}\right.$
易證y=x-$\frac{{m}^{2}}{{x}^{\;}}$+m在[1,m]為遞增,
由②得y=3x+$\frac{{m}^{2}}{x}-2m$在[m,2]為遞增,
所以,h(1)≥1,即0≤m≤2,
所以1≤m≤2.
③當(dāng)m>2時(shí),h(x)=x-$\frac{{m}^{2}}{{x}^{\;}}$+2m(無(wú)解)
綜上所述m≤2.

點(diǎn)評(píng) 本題主要考查表達(dá)式的求解以及不等式恒成立問(wèn)題,利用分類討論結(jié)合一元二次函數(shù)單調(diào)性的性質(zhì)是解決本題的關(guān)鍵.綜合性較強(qiáng),難度較大.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.若函數(shù)f(x)=x-alnx在點(diǎn)(1,1)處的切線方程為y=1,則實(shí)數(shù)a=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.設(shè){an}是等比數(shù)列,已知a1=1,且4a2.2a3,a4成等差數(shù)列.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若Tn=na1+(n-1)a2+…+2an-1+an,求Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.如圖,在平行四邊形ABB1A1中,AB=4,AA1=2,∠ABB1=60°,C,C1分別是AB,A1B1的中點(diǎn),現(xiàn)把平行四邊形AA1C1C沿C1C折起到A′A′1C1C,連接B1C,B1A′,B1A′1,BA′.
(I)證明:A′B1⊥C1C;
(Ⅱ)若A′B1=$\sqrt{6}$,求三棱柱A′BC-A′1B1C1的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.下列函數(shù)中,既是偶函數(shù)又在區(qū)間(0,+∞)上單調(diào)遞減的是( 。
A.y=lnxB.y=cosxC.y=-x2D.$y={({\frac{1}{2}})^x}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.已知x,y滿足約束條件$\left\{\begin{array}{l}{2x-y≤1}\\{x+y≥2}\\{y-x≤2}\end{array}\right.$,且目標(biāo)函數(shù)z=mx+y.
(Ⅰ)若z的最小值為0,則m=-1;
(Ⅱ)若z僅在點(diǎn)(1,1)處取得最小值,則m的取值范圍為(-2,1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.如圖所示的程序框圖,當(dāng)輸入n=50時(shí),輸出的結(jié)果是i=( 。
A.3B.4C.5D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.設(shè)A={1,2,(m2-3m+1)+(m2-5m-6)i},B={-1,5},A∩B={5},則實(shí)數(shù)m的值為( 。
A.-1B.-4C.-1或4D.1或-4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.若$\overrightarrowvimlkjs$=(3,2)是直線l的一個(gè)方向向量,則l的傾斜角的大小為arctan$\frac{2}{3}$(結(jié)果用反三角函數(shù)值表示)

查看答案和解析>>

同步練習(xí)冊(cè)答案