分析 由題意可得x2-4>0,變形可得y=x2+$\frac{1}{{x}^{2}-4}$=x2-4+$\frac{1}{{x}^{2}-4}$+4,整體利用基本不等式可得.
解答 解:∵x>2,∴x2>4,∴x2-4>0,
∴y=x2+$\frac{1}{{x}^{2}-4}$=x2-4+$\frac{1}{{x}^{2}-4}$+4
≥2$\sqrt{({x}^{2}-4)•\frac{1}{{x}^{2}-4}}$+4=6,
當(dāng)且僅當(dāng)x2-4=$\frac{1}{{x}^{2}-4}$即x=$\sqrt{5}$時(shí)取等號(hào).
故數(shù)y=x2+$\frac{1}{{x}^{2}-4}$(x>2)的最小值為6,此時(shí)x的值為$\sqrt{5}$
點(diǎn)評(píng) 本題考查基本不等式求最值,整體湊出可用基本不等式的形式是解決問(wèn)題的關(guān)鍵,屬基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (8,-6) | B. | (-6,1) | C. | (7,17) | D. | (-7,17) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | n(n+2) | B. | $\frac{n}{2}$(2n+3) | C. | n(2n+3) | D. | $\frac{n}{2}$(2n+1) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{16π}{3}$ | B. | $\frac{32}{3}π$ | C. | 4$\sqrt{3}$π | D. | 16π |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com