12.已知函數(shù)f(x)=alnx-x+1,g(x)=-x2+(a+1)x+1,若對任意的x∈[1,e],不等式f(x)≥g(x)恒成立,求實(shí)數(shù)a的取值范圍.

分析 不等式可化為a(lnx-x)≥-x2+2x,根據(jù)條件可知lnx-x<0,可得a≤$\frac{{x}^{2}-2x}{x-lnx}$,把恒成立問題轉(zhuǎn)換為最值問題,只需求出右式的最小值即可,
利用構(gòu)造函數(shù),通過導(dǎo)函數(shù)求出函數(shù)的單調(diào)性,確定函數(shù)的最值.

解答 解:對任意的x∈[1,e],不等式f(x)≥g(x)恒成立,
∴alnx-x+1≥-x2+(a+1)x+1,
∴a(lnx-x)≥-x2+2x,
∵x∈[1,e],
∴l(xiāng)nx<1<x,
∴a≤$\frac{{x}^{2}-2x}{x-lnx}$,
設(shè)t(x)=$\frac{{x}^{2}-2x}{x-lnx}$,x∈[1,e],
求導(dǎo),得t′(x)=
$\frac{(x-1)(x+2-lnx)}{(x-lnx)^{2}}$,
∵x∈[1,e],x-1≥0,lnx≤1,x+2-lnx>0,
從而t′(x)≥0,t(x)在[1,e]上為增函數(shù).
所以t(x)min=t(1)=-1,所以a≤-1.
故答案為a≤-1.

點(diǎn)評 考查了恒成立問題的轉(zhuǎn)換思想和利用導(dǎo)函數(shù)判斷函數(shù)的單調(diào)性,根據(jù)單調(diào)性求函數(shù)的最值.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.在三棱錐A-BCD中,點(diǎn)A在BD上的射影為O,∠BAD=∠BCD=90°,AB=BC=2,AD=DC=2$\sqrt{3}$,AC=$\sqrt{6}$.
(Ⅰ)求證:AO⊥平面BCD;
(Ⅱ)若E是AC的中點(diǎn),求直線BE和平面BCD所成角的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.如圖,四面體ABCD中,AB=DC=1,BD=$\sqrt{2}$,AD=BC=$\sqrt{3}$,二面角A-BD-C的平面角的大小為60°,E,F(xiàn)分別是BC,AD的中點(diǎn),則異面直線EF與AC所成的角的余弦值是(  )
A.$\frac{1}{3}$B.$\frac{\sqrt{3}}{3}$C.$\frac{\sqrt{6}}{3}$D.$\frac{2\sqrt{2}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的一條漸近線與直線x+2y-1=0垂直,則雙曲線的離心率等于( 。
A.$\sqrt{3}$B.$\sqrt{5}$C.3D.$\frac{\sqrt{5}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知函數(shù)f(x)=2sin(x+$\frac{π}{6}$)cos(x-$\frac{π}{6}$),x∈R
(1)求f(x)的單調(diào)遞增區(qū)間;
(2)設(shè)函數(shù)g(x)=f(x)+$\sqrt{3}$cos2x-$\frac{\sqrt{3}}{2}$,且g($\frac{α}{2}$)=$\frac{2}{3}$,0<α<π,求g($\frac{π}{4}$+$\frac{α}{2}$)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.甲、乙兩家快餐店對某日7個(gè)時(shí)段光順的客人人數(shù)進(jìn)行統(tǒng)計(jì)并繪制莖葉圖如圖所示(下面簡稱甲數(shù)據(jù)、乙數(shù)據(jù)),且乙數(shù)據(jù)的眾數(shù)為17,甲數(shù)據(jù)的平均數(shù)比乙數(shù)據(jù)平均數(shù)少2.
(1)求a,b的值.并計(jì)算乙數(shù)據(jù)的方差;
(2)現(xiàn)從甲、乙兩組數(shù)據(jù)中隨機(jī)各選一個(gè)數(shù)分別記為m,n.并進(jìn)行對比分析,有放回的選取2次,記m>n的次數(shù)為X.求X的數(shù)學(xué)期望E(X).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知m,n∈R,則“mn>0”是“一次函數(shù)y=$\frac{m}{n}x$+$\frac{1}{n}$的圖象不經(jīng)過第二象限”的( 。
A.充分而不必要條件B.必要而不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.記樣本x1,x2,…,xm的平均數(shù)為$\overline{x}$,樣本y1,y2,…,yn的平均數(shù)為$\overline{y}$($\overline{x}$≠$\overline{y}$),若樣本x1,x2,…,xm,y1,y2,…,yn的平均數(shù)為$\overline{z}$=$\frac{1}{4}$$\overline{x}$+$\frac{3}{4}$$\overline{y}$,則$\frac{m}{n}$的值為( 。
A.3B.4C.$\frac{1}{4}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知非常數(shù)數(shù)列{an}滿足a1=1,an+12-3an+1an+2an2=0(n∈N*);數(shù)列{bn}滿足$\frac{1}{_{1}}$+$\frac{1}{_{2}}$+$\frac{1}{_{3}}$+…+$\frac{1}{_{n}}$=n2(n∈N*
(1)求數(shù)列{an}和{bn}的通項(xiàng)公式an,bn
(2)令cn=$\frac{{a}_{n}}{_{n}}$,求數(shù)列{cn}的前n項(xiàng)和.

查看答案和解析>>

同步練習(xí)冊答案