13.在邊長(zhǎng)為1的菱形ABCD中,∠BAD=30°,E是BC的中點(diǎn),則$\overrightarrow{AC}$•$\overrightarrow{AE}$ ( 。
A.$\frac{6+3\sqrt{3}}{4}$B.$\frac{3+\sqrt{3}}{3}$C.$\frac{5}{4}$D.$\frac{9}{4}$

分析 由條件可得到$\overrightarrow{AC}•\overrightarrow{AE}=(\overrightarrow{AB}+\overrightarrow{AD})•(\overrightarrow{AB}+\frac{1}{2}\overrightarrow{AD})$,而$|\overrightarrow{AB}|=|\overrightarrow{AD}|=1$,并且∠BAD=30°,這樣進(jìn)行向量數(shù)量積的運(yùn)算即可求出$\overrightarrow{AC}•\overrightarrow{AE}$的值.

解答 解:如圖,根據(jù)條件:

$\overrightarrow{AC}•\overrightarrow{AE}=(\overrightarrow{AB}+\overrightarrow{AD})•(\overrightarrow{AB}+\frac{1}{2}\overrightarrow{AD})$
=${\overrightarrow{AB}}^{2}+\frac{3}{2}\overrightarrow{AB}•\overrightarrow{AD}+\frac{1}{2}{\overrightarrow{AD}}^{2}$
=$1+\frac{3\sqrt{3}}{4}+\frac{1}{2}$
=$\frac{6+3\sqrt{3}}{4}$.
故選:A.

點(diǎn)評(píng) 考查向量加法的平行四邊形法則,向量數(shù)乘的幾何意義,相等向量的概念,以及向量數(shù)量積的運(yùn)算及計(jì)算公式.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.如表為一組等式,某學(xué)生根據(jù)表猜想S2n-1=(2n-1)(an2+bn+c),老師回答正確,則a-b+c=5.
S1=1,
S2=2+3=5,
S3=4+5+6=15,
S4=7+8+9+10=34,
S5=11+12+13+14+15=65,

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.根據(jù)微信同程旅游的調(diào)查統(tǒng)計(jì)顯示,參與網(wǎng)上購(gòu)票的1000位購(gòu)票者的年齡(單位:歲)情況如圖所示.
(1)已知中間三個(gè)年齡段的網(wǎng)上購(gòu)票人數(shù)成等差數(shù)列,求a,b的值;
(2)為鼓勵(lì)大家網(wǎng)上購(gòu)票,該平臺(tái)常采用購(gòu)票就發(fā)放酒店入住代金券的方法進(jìn)行促銷(xiāo),具體做法如下:年齡在[30,50)歲的每人發(fā)放20元,其余年齡段的每人發(fā)放50元,先按發(fā)放代金券的金額采用分層抽樣的方式從參與調(diào)查的1000位網(wǎng)上購(gòu)票者中抽取5人,并在這55人中隨機(jī)抽取3人進(jìn)行回訪調(diào)查,求此3人獲得代金券的金額總和為90元的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知函數(shù)f(x)=$\frac{a}{x}$-xlnx(a∈R),g(x)=2x3-3x2
(1)若m為正實(shí)數(shù),求函數(shù)y=g(x),x∈[$\frac{1}{m}$,m]上的最大值和最小值;
(2)若對(duì)任意的實(shí)數(shù)s,t∈[$\frac{1}{2}$,2],都有f(s)≤g(t),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知函數(shù)f(x)=sin2x+acosx+x在點(diǎn)x=$\frac{π}{6}$處取得極值.
(1)求實(shí)數(shù)a的值;
(2)當(dāng)x∈[-$\frac{π}{6}$,$\frac{7π}{6}$]時(shí),求函數(shù)f(x)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.已知復(fù)數(shù)z滿(mǎn)足z(1-i)=3+i,則z=( 。
A.1+2iB.-1+2iC.1-2iD.-1-2i

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知函數(shù)f(x)=x-$\frac{1}{2}$ax2-ln(x+1),其中a∈R.(提示:ln(x+1)′=$\frac{1}{x+1}$)
(1)若x=2是f(x)的極值點(diǎn),求a的值;
(2)求f(x)的單調(diào)區(qū)間;
(3)若f(x)在[0,+∞)上的最大值是0,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.如圖1,在直角梯形ABCD中,∠ADC=90°,CD∥AB,AB=4,AD=CD=2.將△ADC沿AC折起,使平面ADC⊥平面ABC,得到幾何體D-ABC,如圖2所示.
(Ⅰ)  求證:BC⊥平面ACD;
(Ⅱ)求幾何體A-BCD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知點(diǎn)F是拋物線C:x2=2py(p>0)的焦點(diǎn),點(diǎn)P(3,y0)(y0>1)是拋物線C上一點(diǎn),且$|{PF}|=\frac{13}{4}$,⊙Q的方程為x2+(y-3)2=6,過(guò)點(diǎn)F作直線l,與拋物線C和⊙Q依次交于M,A,B,N.(如圖所示)
(1)求拋物線C的方程;
(2)求(|MB|+|NA|)•|AB|的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案