【題目】如圖,在單位正方體中,點(diǎn)P在線段上運(yùn)動,給出以下四個命題:
異面直線與間的距離為定值;
三棱錐的體積為定值;
異面直線與直線所成的角為定值;
二面角的大小為定值.
其中真命題有( )
A. 1個 B. 2個 C. 3個 D. 4個
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】從2名男生和2名女生中任意選擇兩人在星期六、星期日參加某公益活動,每天一人,則星期六安排一名男生、星期日安排一名女生的概率為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知:直線,一個圓與軸正半軸與軸正半軸都相切,且圓心到直線的距離為.
()求圓的方程.
()是直線上的動點(diǎn), , 是圓的兩條切線, , 分別為切點(diǎn),求四邊形的面積的最小值.
()圓與軸交點(diǎn)記作,過作一直線與圓交于, 兩點(diǎn), 中點(diǎn)為,求最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在一個坡度一定的山坡AC的頂上有一高度為25m的建筑物CD,為了測量該山坡相對于水平地面的坡角θ,在山坡的A處測得∠DAC=15°,沿山坡前進(jìn)50m到達(dá)B處,又測得∠DBC=45°,根據(jù)以上數(shù)據(jù)可得cosθ= .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)滿足對任意的m,n都有f(m+n)=f(m)+f(n)-1,設(shè)g(x)=f(x)+(a>0,a≠1),g(ln2018)=-2015,則g(ln)=______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知a∈R,f(x)=log2(1+ax).
(1)求f(x2)的值域;
(2)若關(guān)于x的方程f(x)-log2[(a-4)x2+(2a-5)x]=0的解集恰有一個元素,求實數(shù)a的取值范圍;
(3)當(dāng)a>0時,對任意的t∈(,+∞),f(x2)在[t,t+1]的最大值與最小值的差不超過4,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)f(x)與g(x)是定義在同一區(qū)間[a,b]上的兩個函數(shù),若函數(shù)y=f(x)-g(x)在x∈[a,b]上有兩個不同的零點(diǎn),則稱f(x)和g(x)在[a,b]上是“關(guān)聯(lián)函數(shù)”,區(qū)間[a,b]稱為“關(guān)聯(lián)區(qū)間”.若f(x)=x2-3x+4與g(x)=2x+m在[0,3]上是“關(guān)聯(lián)函數(shù)”,則m的取值范圍是 ( ).
A. B.[-1,0] C.(-∞,-2] D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的方程為2kx2﹣2x﹣5k﹣2=0的兩個實數(shù)根一個小于1,另一個大于1,則實數(shù)k的取值范圍是( 。
A. B. C. D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com