分析 (1)先假設(shè)相遇時小艇的航行距離為S,根據(jù)余弦定理可得到關(guān)系式S=$\sqrt{900{t}^{2}-600t+400}$,整理后運用二次函數(shù)的性質(zhì)可確定答案.
(2)先假設(shè)小艇與輪船在某處相遇,根據(jù)余弦定理可得到(vt)2=202+(30t)2-2•20•30t•cos(90°-30°),再由t的范圍可求得v的最小值.
(3)根據(jù)(2)中v與t的關(guān)系式,設(shè)$\frac{1}{t}$=μ,然后代入關(guān)系式整理成400u2-600u+900-v2=0,將問題等價于方程有兩個不等正根的問題,進而得解.
解答 解:(1)設(shè)相遇時小艇航行的距離為S海里,則S=$\sqrt{900{t}^{2}-600t+400}$,
當t=$\frac{1}{3}$,Smin=10$\sqrt{3}$,v=30$\sqrt{3}$,
即小艇以30$\sqrt{3}$的速度航行時,相遇時小艇航行距離最。
(2)設(shè)小艇與輪船在B處相遇.
由題意得(vt)2=202+(30t)2-1 200t•cos60°,
v2=$\frac{400}{{t}^{2}}$-$\frac{600}{t}$+900=400($\frac{1}{t}$-$\frac{3}{4}$)2+675.
∵0<t≤$\frac{1}{2}$,∴$\frac{1}{t}$=2時,v取得最小值10$\sqrt{13}$.
(3)由(2)知v2=$\frac{400}{{t}^{2}}$-$\frac{600}{t}$+900,設(shè)$\frac{1}{t}$=μ(μ>0),
∴400μ2-600μ+900-v2=0.
小艇總能有兩種不同的航行方向與輪船相遇,等價于上述方程應(yīng)有兩個不等正根,
∴$\left\{\begin{array}{l}{60{0}^{2}-1600(900-{v}^{2})>0}\\{900-{v}^{2}>0}\end{array}\right.$,
解得15$\sqrt{3}$<v<30.
點評 本題主要考查解三角形、二次函數(shù)等基礎(chǔ)知識,考查推理論證能力,抽象概括能力、運算求解能力、應(yīng)用意識,考查函數(shù)與方程思想、數(shù)形結(jié)合思想、化歸思想.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | f(x)=1-x | B. | f(x)=x | C. | f(x)=ex | D. | f(x)=1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 第一象限角 | B. | 第二象限角 | C. | 第三象限角 | D. | 第四象限角 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -f'(1) | B. | 3f'(1) | C. | $-\frac{1}{3}f'(1)$ | D. | $\frac{1}{3}f'(1)$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 17 | B. | -7 | C. | 7 | D. | -6 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com