15.如圖,在底面為平行四邊形的四棱錐P-ABCD中,AB⊥AC,PA⊥平面ABCD,且AB=AC=$\frac{1}{2}$PA=1,點(diǎn)E是PD的中點(diǎn).
(1)求PB與EC所成角的余弦值;
(2)求二面角E-AC-D的余弦值.

分析 (1)連BD交AC于點(diǎn)O,連EO,EC,說(shuō)明PB與EC所成角就是∠CEO,利用余弦定理求解即可.
(2)取AD的中點(diǎn)F,連EF,F(xiàn)O,根據(jù)定義可知∠EOF是二面角E-AC-D的平面角,在△EOF中求出此角.

解答 解:(1)連BD交AC于點(diǎn)O,連EO,EC,
則EO是△PDB的中位線,PB∥EO,
PB與EC所成角就是∠CEO,
AB=AC=$\frac{1}{2}$PA=1,可得AG=FC=$\frac{\sqrt{2}}{2}$,PA=2,EF=1,EC=$\sqrt{1+\frac{1}{2}}$=$\frac{\sqrt{6}}{2}$,
OE=$\sqrt{1+({\frac{1}{2})}^{2}}$=$\frac{\sqrt{5}}{2}$,OC=1,
cos∠CEO=$\frac{\frac{5}{4}+\frac{6}{4}-1}{2×\frac{\sqrt{5}}{2}×\frac{\sqrt{6}}{2}}$=$\frac{7\sqrt{30}}{60}$.
(2)連BD交AC于點(diǎn)O,連EO,EC,
則EO是△PDB的中位線,
取AD的中點(diǎn)F,連EF,F(xiàn)O,
則EF是△PAD的中位線,
∴EF∥PA又PA⊥平面ABCD,
∴EF⊥平面ABCD
同理FO是△ADC的中位線,
∴FO∥AB,F(xiàn)O⊥AC由三垂線定理可知∠EOF是二面角E-AC-D的平面角.
又FO=$\frac{1}{2}$AB=$\frac{1}{2}$PA=EF
∴∠EOF=45°,故所求二面角E-AC-D的大小為45°.

點(diǎn)評(píng) 本題主要考查了直線與平面平行的判定,異面直線所成角以及二面角等有關(guān)知識(shí),考查空間想象能力、運(yùn)算能力和推理論證能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.直棱柱ABC-A1B1C1中,AB=5,AC=4,BC=3,AA1=4,點(diǎn)D在AB上.
(1)求證:AC⊥B1C;
(2)若D是AB中點(diǎn),求證:AC1∥平面B1CD;
(3)當(dāng)$\frac{BD}{AB}$=$\frac{3}{7}$時(shí),求二面角B-CD-B1的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.正三棱錐P-ABC中,(△ABC是正三角形,點(diǎn)P在平面ABC的射影是△ABC的中心)側(cè)棱PA與底面ABC成60°角,若AB=2$\sqrt{3}$,則P到平面ABC的距離是2$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.一質(zhì)點(diǎn)按規(guī)律S(t)=2t3+1運(yùn)動(dòng),則t=1時(shí)的瞬時(shí)速度為( 。
A.6B.5C.4D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.若a+1,2a+2,3a+5成等比數(shù)列,則實(shí)數(shù)a的值為1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.若A={2,3,4},B={x|x<4},則集合A∩B中的元素個(gè)數(shù)是( 。
A.3B.2C.1D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.已知命題p:函數(shù)y=2-ax+1(a>0,a≠1)恒過(guò)定點(diǎn)(-1,1):命題q:若函數(shù)f(x-1)為偶函數(shù),則f(x)的圖象關(guān)于直線x=1對(duì)稱.下列命題為真命題的是( 。
A.p∧qB.?p∧?qC.?p∧qD.p∧?q

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.正三棱柱ABC-A1B1C1各棱長(zhǎng)均為1,M為CC1的中點(diǎn),則點(diǎn)B1到截面A1BM的距離為( 。
A.$\sqrt{2}$B.$\frac{\sqrt{2}}{2}$C.$\frac{1}{2}$D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.“拋物線y=ax2的準(zhǔn)線方程為y=2”是“拋物線y=ax2的焦點(diǎn)與雙曲線$\frac{y^2}{3}-{x^2}=1$的焦點(diǎn)重合”的(  )
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

同步練習(xí)冊(cè)答案