在數(shù)列中,.
(Ⅰ)求證:數(shù)列為等差數(shù)列;
(Ⅱ)設(shè)數(shù)列滿足,若
對(duì)一切恒成立,求實(shí)數(shù)的取值范圍.
(Ⅰ)略(Ⅱ)實(shí)數(shù)的取值范圍是
(Ⅰ) 由變形得:

所以…………………4分
故數(shù)列是以為首項(xiàng),為公差的等差數(shù)列………………………5分
(Ⅱ)由(Ⅰ)得…………………………6分
所以…………………………7分
設(shè)………………8分

兩式相除得:……10分
所以是關(guān)于的單調(diào)遞增函數(shù),則
故實(shí)數(shù)的取值范圍是…………………………12分
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)函數(shù)的定義域、值域均為的反函數(shù)為,且對(duì)任意的
,均有,定義數(shù)列
(1)求證:
(2)設(shè)求證
(3)是否存在常數(shù)A、B同時(shí)滿足:
 ,
  如果存在,求出A、B的值,如果不存在,說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知不等式+++……+>a對(duì)于一切大于1的自然數(shù)n都成立,求實(shí)數(shù)a的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

求出下列等差數(shù)列中的未知項(xiàng):
(1)m,  3,  5,  n;
(2)3,  m , n, -9,  p,  q.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(14分)已知在數(shù)列{an}中,a1=t,a2=t2,其中t>0,x=是函數(shù)f(x)=an-1x3-3[(t+1)an-an+1]x+1   (n≥2)的一個(gè)極值點(diǎn)(Ⅰ)求數(shù)列{an}的通項(xiàng)公式
(Ⅱ)當(dāng)時(shí),令,數(shù)列項(xiàng)的和為,求證:
(Ⅲ)設(shè),數(shù)列項(xiàng)的和為,求同時(shí)滿足下列兩個(gè)條件的的值:(1) (2)對(duì)于任意的,均存在,當(dāng)時(shí),

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分13分)設(shè)數(shù)列的前項(xiàng)和為,且;數(shù)列為等差數(shù)列,且.
(Ⅰ)求數(shù)列的通項(xiàng)公式;(Ⅱ)若為數(shù)列的前項(xiàng)和,求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知數(shù)列{an}滿足an+2=-ann∈N*),且a1=1,a2=2,則該數(shù)列前2002項(xiàng)的和為
A.0B.-3C.3D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知公差不為零的等差數(shù)列與等比數(shù)列滿足:,那么(  )                    
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

等差數(shù)列中,,那么           .

查看答案和解析>>

同步練習(xí)冊(cè)答案