雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)
離心率為2,有一個焦點與拋物線y2=4x的焦點重合,則雙曲線的漸近線方程為( 。
A、y=±
1
2
x
B、y=±2x
C、y=±
3
3
x
D、y=±
3
x
分析:先根據(jù)拋物線方程求得焦點坐標,進而確定雙曲線的焦點,求得雙曲線中的c,根據(jù)離心率進而求得長半軸,最后根據(jù)b2=c2-a2求得b,則雙曲線的方程可得.
解答:解:拋物線y2=4x的焦點為(1,0),
則雙曲線的焦距2c為2,
則有
a2+b2=1 
1
a2
=4
解得a=
1
2
,b=
3
2

則雙曲線的漸近線方程為:
y=±
3
x

故選D
點評:本題主要考查了雙曲線的標準方程.考查了對圓錐曲線基礎知識的綜合運用.解題的關鍵是對圓錐曲線的基本性質(zhì)能熟練掌握.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

若點O和點F(-2,0)分別是雙曲線
x2
a2
-y2=1(a>0)
的中心和左焦點,點P為雙曲線右支上的任意一點,則
OP
FP
的取值范圍為( 。
A、[3-2
3
,+∞)
B、[3+2
3
,+∞)
C、[-
7
4
,+∞)
D、[
7
4
,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知雙曲線
x2
a2
-y2=1(a>0)
的一條準線方程為x=
3
2
,則a等于
 
,該雙曲線的離心率為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設圓C的圓心為雙曲線
x2
a2
-y2=1(a>0)
的左焦點,且與此雙曲線的漸近線相切,若圓C被直線l:x-y+2=0截得的弦長等于
2
,則a等于( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若點O和點F(-2,0)分別是雙曲線
x2
a2
-y2=1(a>0)的中心和左焦點,點P為雙曲線右支上的一點,并且P點與右焦點F′的連線垂直x軸,則線段OP的長為(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知雙曲線
x2
a2
-y2=1
的一個焦點坐標為(-
3
,0)
,則其漸近線方程為(  )
A、y=±
2
x
B、y=±
2
2
x
C、y=±2x
D、y=±
1
2
x

查看答案和解析>>

同步練習冊答案