【題目】已知數(shù)列{an}的前n項(xiàng)和為Sn , 且滿足a1=1,nSn+1﹣(n+1)Sn= ,n∈N*
(1)求a2的值;
(2)求數(shù)列{an}的通項(xiàng)公式.

【答案】
(1)解:由a1=1,nSn+1﹣(n+1)Sn= ,n∈N*,令n=1,則S2﹣2S1=1,

∴a2+1﹣2=1,解得a2=2.


(2)解:由nSn+1﹣(n+1)Sn= ,n∈N*,變形為: = ,

∴數(shù)列 是等差數(shù)列,首項(xiàng)為1,公差為

=1+ = ,

∴Sn= ,

∴當(dāng)n≥2時(shí),Sn﹣1= ,

an=Sn﹣Sn﹣1= =n,

∴an=n.


【解析】(1)令n=2可得a2的值;(2)對已知條件進(jìn)行變形,可得數(shù)列 { } 是等差數(shù)列,進(jìn)而可得數(shù)列 { } 的通項(xiàng)公式,再利用Sn與an的關(guān)系可得數(shù)列{an}的通項(xiàng)公式.
【考點(diǎn)精析】本題主要考查了數(shù)列的前n項(xiàng)和和數(shù)列的通項(xiàng)公式的相關(guān)知識點(diǎn),需要掌握數(shù)列{an}的前n項(xiàng)和sn與通項(xiàng)an的關(guān)系;如果數(shù)列an的第n項(xiàng)與n之間的關(guān)系可以用一個(gè)公式表示,那么這個(gè)公式就叫這個(gè)數(shù)列的通項(xiàng)公式才能正確解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】當(dāng)時(shí),函數(shù)的值域是_________.

【答案】[1,2]

【解析】:f(x)=sinx+cosx=2(sinx+cosx)=2sin(x+),

≤x≤,

≤x+,

≤sin(x+)≤1,

函數(shù)f(x)的值域?yàn)?/span>[﹣1,2],

故答案為:[﹣1,2].

型】填空
結(jié)束】
15

【題目】若點(diǎn)O內(nèi),且滿足,設(shè)的面積, 的面積,則________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=|x﹣1|﹣|2x+1|的最大值為m
(1)作函數(shù)f(x)的圖象
(2)若a2+b2+2c2=m,求ab+2bc的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐S﹣ABCD中,底面ABCD為直角梯形,AB∥CD,BC⊥CD,平面SCD⊥平面ABCD,SC=SD=CD=AD=2AB,M,N分別為SA,SB的中點(diǎn),E為CD中點(diǎn),過M,N作平面MNPQ分別與BC,AD交于點(diǎn)P,Q,若 =t
(1)當(dāng)t= 時(shí),求證:平面SAE⊥平面MNPQ;
(2)是否存在實(shí)數(shù)t,使得二面角M﹣PQ﹣A的平面角的余弦值為 ?若存在,求出實(shí)數(shù)t的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=ax2+(x﹣1)ex
(1)當(dāng)a=﹣ 時(shí),求f(x)在點(diǎn)P(1,f(1))處的切線方程;
(2)討論f(x)的單調(diào)性;
(3)當(dāng)﹣ <a<﹣ 時(shí),f(x)是否存在極值?若存在,求所有極值的和的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】學(xué)生會(huì)為了調(diào)查學(xué)生對2018年俄羅斯世界杯的關(guān)注是否與性別有關(guān),抽樣調(diào)查100人,得到如下數(shù)據(jù):

不關(guān)注

關(guān)注

總計(jì)

男生

30

15

45

女生

45

10

55

總計(jì)

75

25

100

根據(jù)表中數(shù)據(jù),通過計(jì)算統(tǒng)計(jì)量K2= ,并參考一下臨界數(shù)據(jù):

P(K2>k0

0.50

0.40

0.25

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k0

0.455

0.708

1.323

2.072

2.706

3.84

5.024

6.635

7.879

10.83

若由此認(rèn)為“學(xué)生對2018年俄羅斯年世界杯的關(guān)注與性別有關(guān)”,則此結(jié)論出錯(cuò)的概率不超過( )
A.0.10
B.0.05
C.0.025
D.0.01

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】運(yùn)行如圖所示的程序框圖,則輸出結(jié)果為(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知矩形BB1C1C所在平面與底面ABB1N垂直,在直角梯形ABB1N中,AN∥BB1 , AB⊥AN,CB=BA=AN= BB1

(1)求證:BN⊥平面C1B1N;
(2)求二面角C﹣C1N﹣B的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) ;
(1)若函數(shù) 上為增函數(shù),求正實(shí)數(shù) 的取值范圍;
(2)當(dāng) 時(shí),求函數(shù) 上的最值;
(3)當(dāng) 時(shí),對大于1的任意正整數(shù) ,試比較 的大小關(guān)系.

查看答案和解析>>

同步練習(xí)冊答案