【題目】已知函數(shù).
(Ⅰ)若,求函數(shù)在上的零點(diǎn)個(gè)數(shù)(為自然對數(shù)的底數(shù));
(Ⅱ)若恰有一個(gè)零點(diǎn),求的取值集合;
(Ⅲ)若有兩零點(diǎn),求證:.
【答案】(1)1(2){1}(3)見解析
【解析】
(Ⅰ)先求出,再結(jié)合單調(diào)性及函數(shù)零點(diǎn)的概念可解得零點(diǎn)的個(gè)數(shù);
(Ⅱ)求出并求出極值點(diǎn),結(jié)合單調(diào)性,討論,及時(shí)分別對a進(jìn)行討論得出的取值集合;
(Ⅲ)先證.根據(jù)a建立等式關(guān)系,再結(jié)合換元法,用t表示,再建立新函數(shù),根據(jù)的單調(diào)性及最值可證得,再證明,利用,根據(jù)可解出(記).,結(jié)合(Ⅰ)可知,建立新函數(shù),再利用導(dǎo)數(shù)結(jié)合的單調(diào)性可得出、的不等式,整理可證的結(jié)論.
(Ⅰ)由題設(shè),,故在上單調(diào)遞減.
所以在上至多只有一個(gè)零點(diǎn).
又,故函數(shù)在上只有一個(gè)零點(diǎn).
(Ⅱ),令得.
當(dāng)時(shí),.在上單調(diào)遞減;
當(dāng)時(shí),.在上單調(diào)遞增.
故.
(1)當(dāng),即時(shí),因?yàn)樽畲笾迭c(diǎn)唯一,故符合題設(shè);
(2)當(dāng),即時(shí),恒成立,不合題設(shè);
(3)當(dāng),即時(shí),一方面,;另一方面,(易證:時(shí),),于是有兩個(gè)零點(diǎn),不合題設(shè).
綜上,的取值集合為.
(Ⅲ)先證.
依題設(shè),有,于是.
記,則,故.
于是.
記函數(shù).
因?yàn)?/span>,故在上單調(diào)遞增.
于是時(shí),.
又,所以.
再證:.
因?yàn)?/span>,故,也是的兩零點(diǎn).
由,得(記).
仿(1)知是的唯一最大值點(diǎn),故有.
記函數(shù),則,故在上單調(diào)遞增.
故當(dāng)時(shí),;當(dāng)時(shí),.
于是
整理,得,
即.
同理,.
故,
,
于是. 綜上,.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,平面平面,,四邊形為平行四邊形,,為線段的中點(diǎn),點(diǎn)滿足.
(Ⅰ)求證:直線平面;
(Ⅱ)求證:平面平面;
(Ⅲ)若平面平面,求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}滿足,且.
(1)求證:數(shù)列是等差數(shù)列,并求出數(shù)列的通項(xiàng)公式;
(2)求數(shù)列的前項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四面體ABCD中,平面DAC⊥底面ABC,,AD=CD=,O是AC的中點(diǎn),E是BD的中點(diǎn).
(1)證明:DO⊥底面ABC;
(2)求二面角D-AE-C的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校100名學(xué)生期中考試語文成績的頻率分布直方圖如圖所示,其中成績分組區(qū)間是:[50,60),[60,70),[70,80),[80,90),[90,100].
(1)求圖中a的值;
(2)根據(jù)頻率分布直方圖,估計(jì)這100名學(xué)生語文成績的平均分;
(3)若這100名學(xué)生語文成績某些分?jǐn)?shù)段的人數(shù)(x)與數(shù)學(xué)成績相應(yīng)分?jǐn)?shù)段的人數(shù)(y)之比如下表所示,求數(shù)學(xué)成績在[50,90)之外的人數(shù).
分?jǐn)?shù)段 | [50,60) | [60,70) | [70,80) | [80,90) |
x∶y | 1∶1 | 2∶1 | 3∶4 | 4∶5 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線的焦點(diǎn)為,直線與軸的交點(diǎn)為,與的交點(diǎn)為,且.
(Ⅰ)求的方程;
(Ⅱ)設(shè)過定點(diǎn)的直線與拋物線交于,兩點(diǎn),連接并延長交拋物線的準(zhǔn)線于點(diǎn),當(dāng)直線恰與拋物線相切時(shí),求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:的離心率為,且與拋物線交于,兩點(diǎn), (為坐標(biāo)原點(diǎn))的面積為.
(1)求橢圓的方程;
(2)如圖,點(diǎn)為橢圓上一動(dòng)點(diǎn)(非長軸端點(diǎn)),為左、右焦點(diǎn),的延長線與橢圓交于點(diǎn),的延長線與橢圓交于點(diǎn),求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知,設(shè),且,記;
(1)設(shè),其中,試求的單調(diào)區(qū)間;
(2)試判斷弦的斜率與的大小關(guān)系,并證明;
(3)證明:當(dāng)時(shí),.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=ex+ax2+bx(e為自然對數(shù)的底,a,b為常數(shù)),曲線y=f(x)在x=0處的切線經(jīng)過點(diǎn)A(﹣1,﹣1)
(1)求實(shí)數(shù)b的值;
(2)是否存在實(shí)數(shù)a,使得曲線y=f(x)所有切線的斜率都不小于2?若存在,求實(shí)數(shù)a的取值集合,若不存在,說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com