考點:數(shù)列的求和,等差數(shù)列的性質(zhì)
專題:等差數(shù)列與等比數(shù)列
分析:(1)由2
是a
n+2和a
n的等比中項得到數(shù)列遞推式
4Sn=an2+2an,在該數(shù)列遞推式中取n=1求得首項,取n=n-1得另一遞推式,作差后得到數(shù)列{a
n}為等差數(shù)列,并求數(shù)列{a
n}的通項公式;
(2)直接利用等差數(shù)列的前n項和公式得答案.
解答:
證明:(1)∵2
是a
n+2和a
n的等比中項,
∴
4Sn=(an+2)an=an2+2an ①,
當(dāng)n≥2時,
4Sn-1=an-12+2an-1 ②,
①-②得
4an=an2-an-12+2(an-an-1),
(a
n+a
n-1)(a
n-a
n-1)-2(a
n+a
n-1)=0,
(a
n+a
n-1)(a
n-a
n-1-2)=0,
∵數(shù)列{a
n}的各項均為正數(shù),
∴a
n-a
n-1=2(n≥2),
又在①中取n=1,得
4a1=a12+2a1,解得a
1=2.
∴數(shù)列{a
n}為以2為首項,以2為公差的等差數(shù)列,
則a
n=2+2(n-1)=2n;
(2)
Sn=na1+=2n+=n
2+n.
點評:本題考查了等差關(guān)系的確定,考查了等差數(shù)列的通項公式和求和公式,是中檔題.