18.已知集合A={a,4},B={2,a2},且A∩B={4},則A∪B=( 。
A.{2,4}B.{-2,4}C.{-2,2,4}D.{-4,2,4}

分析 由A與B交集的元素為4,得到4屬于A且屬于B,得到a2=4,求出a的值,確定出A與B,即可確定出兩集合的并集.

解答 解:∵集合A={a,4},B={2,a2},且A∩B={4},
∴a2=4,解得:a=2或a=-2,
當a=2時,A={2,4},B={2,4},不合題意,舍去;
當a=-2時,A={-2,4},B={2,4},
則A∪B={-2,2,4}.
故選:C

點評 此題考查了交、并集及其運算,是一道基本題型,熟練掌握交、并集的定義是解本題的關鍵.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

8.已知函數(shù)f(x)=ex-ax-1(a為常數(shù)),曲線y=f(x)在與y軸的交點A處的切線斜率為-1.
(1)求a的值及函數(shù)y=f(x)的單調區(qū)間;
(2)若x1<ln2,x2>ln2,且f(x1)=f(x2),證明:x1+x2<2ln2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.若x,y滿足約束條件$\left\{{\begin{array}{l}{x-1≥0}\\{x-y≤0}\\{x+y-4≤0}\end{array}}\right.$,則$\frac{y-1}{x}$的最大值為( 。
A.2B.$\frac{1}{2}$C.3D.1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.已知a,b∈R,i為虛數(shù)單位,若$\frac{a-2i}{1+i}$=1-bi,則a+b的值為( 。
A.6B.7C.5D.-1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.A={x|$\frac{1}{x}$≥1},B={x|x≥1},則A∪B=( 。
A.RB.(0,+∞)C.{1}D.[1,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

3.函數(shù)f(x)=Asin(wx+φ)(A>0,w>0,φ∈R)的部分圖象如圖所示,則將y=f(x)的圖象向右平移π6個單位后得到g(x),得到的函數(shù)圖象對稱軸為x=$\frac{kπ}{2}$+$\frac{π}{3}$,k∈Z,函數(shù)g(x)的解析式為y=sin(2x-$\frac{π}{6}$).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.已知實數(shù)x,y滿足條件$\left\{{\begin{array}{l}{x≥0}\\{y≥0}\\{x+y≤2}\end{array}}\right.$,則使不等式x+2y≥2成立的點(x,y)的區(qū)域的面積為(  )
A.1B.$\frac{3}{4}$C.$\frac{1}{2}$D.$\frac{1}{6}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.設各項均為正整數(shù)的無窮等差數(shù)列{an},滿足a54=4028,且存在正整數(shù)k,使a1,a54,ak成等比數(shù)列,則公差d的所有可能取值之和為301.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.如圖直角梯形ABCD中,|AB|=2,|DC|=1,|AD|=1,點P為梯形ABCD內部(包括邊界)內任一點,則$\overrightarrow{AP}$•$\overrightarrow{BD}$的取值范圍為[-4,1].

查看答案和解析>>

同步練習冊答案