8.已知△ABC的三個(gè)內(nèi)角A、B、C所對(duì)的邊分別為a、b、c.若a=2,cosA=$\frac{1}{3}$,則△ABC面積的最大值為( 。
A.2B.$\sqrt{2}$C.$\frac{1}{2}$D.$\sqrt{3}$

分析 利用余弦定理得出4=b2+c2-$\frac{2}{3}$bc,再利用基本不等式求出bc≤3,根據(jù)△ABC的面積公式即可求出它的最大值.

解答 解:△ABC中,a=2,cosA=$\frac{1}{3}$,
由余弦定理得,a2=b2+c2-2bccosA,
即4=b2+c2-$\frac{2}{3}$bc;
又4=b2+c2-$\frac{2}{3}$bc≥2bc-$\frac{2}{3}$bc=$\frac{4}{3}$bc,
當(dāng)且僅當(dāng)b=c時(shí)取“=”;
∴bc≤3,
∴△ABC的面積為
S=$\frac{1}{2}$bcsinA≤$\frac{1}{2}$×3×$\sqrt{1{-(\frac{1}{3})}^{2}}$=$\sqrt{2}$,
即△ABC面積的最大值為$\sqrt{2}$.
故選:B.

點(diǎn)評(píng) 本題考查了余弦定理和△ABC面積公式的應(yīng)用問(wèn)題,也考查了基本不等式的應(yīng)用問(wèn)題,是綜合性題目.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.已知數(shù)列{an}是一個(gè)等差數(shù)列,Sn為其前n項(xiàng)和,a2=1,S9=-45.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè)bn=$\frac{5-{a}_{n}}{2}$,cn=2bn,求數(shù)列{cn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.已知函數(shù)f(x)=ax3+bx2+cx+1(a≠0),下列結(jié)論中錯(cuò)誤的是( 。
A.?x0∈R,使得f(x0)=0
B.函數(shù)y=f(x)的圖象一定是中心對(duì)稱圖形
C.若x0是函數(shù)f(x)的極值點(diǎn),則f'(x0)=0
D.若x0是函數(shù)f(x)的極小值點(diǎn),則函數(shù)f(x)在區(qū)間(-∞,x0)上單調(diào)遞減

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.若目標(biāo)函數(shù)z=ax+by(a>0,b>0)滿足約束條件$\left\{\begin{array}{l}{2x-y-6≤0}\\{x-y+2≥0}\end{array}\right.$且最大值為40,則$\frac{5}{a}$+$\frac{1}$的最小值為$\frac{9}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.已知函數(shù)f(x)=$\frac{1}{3}$x3+x2+ax,若g(x)=$\frac{1}{e^x}$,對(duì)任意x1∈[$\frac{1}{2}$,2],存在x2∈[$\frac{1}{2}$,2],使f'(x1)≤g(x2)成立,則實(shí)數(shù)a的取值范圍是$(-∞,\frac{{\sqrt{e}}}{e}-8]$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.已知數(shù)列{an}的前n項(xiàng)和為Sn,a1=1,且nan+1=2Sn(n∈N*),數(shù)列{bn}滿足b1=$\frac{1}{2}$,b2=$\frac{1}{4}$,對(duì)任意n∈N+,都有bn+12=bn•bn+2
(I)求數(shù)列{an},{bn}的通項(xiàng)公式;
(II)設(shè){anbn}的前n項(xiàng)和為T(mén)n,若Tn>$\frac{4-λ}{2}$對(duì)任意的n∈N+恒成立,求λ得取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.如圖,在正方體ABCD-A1B1C1D1中,AB=2,平面α經(jīng)過(guò)B1D1,直線AC1∥α,則平面α截該正方體所得截面的面積為( 。
A.2$\sqrt{3}$B.$\frac{3\sqrt{2}}{2}$C.$\frac{\sqrt{34}}{2}$D.$\sqrt{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn,S12<0,S13>0,則Sn的最小值為( 。
A.S5B.S6C.S7D.S8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.如圖,在直四棱柱ABCD-A1B1C1D1中,底面ABCD是邊長(zhǎng)為2的正方形,E,F(xiàn)分別為線段DD1,BD的中點(diǎn).
(1)求證:EF∥平面ABC1D1;
(2)四棱柱ABCD-A1B1C1D1的外接球的表面積為16π,求證:EF⊥平面EA1C1

查看答案和解析>>

同步練習(xí)冊(cè)答案