分析 作出不等式組對(duì)應(yīng)的平面區(qū)域,根據(jù)條件得到能夠覆蓋區(qū)域Ω的最小的圓是△ABC的外接圓,求出圓的方程即可.
解答 解:作出不等式組對(duì)應(yīng)的平面區(qū)域如圖:
則△ABC為直角三角形,
則能夠覆蓋區(qū)域Ω的最小的圓是△ABC的外接圓,
由$\left\{\begin{array}{l}{x=1}\\{x+y=4}\end{array}\right.$得$\left\{\begin{array}{l}{x=1}\\{y=3}\end{array}\right.$,即A(1,3),
由$\left\{\begin{array}{l}{x=1}\\{x-y=0}\end{array}\right.$得$\left\{\begin{array}{l}{x=1}\\{y=1}\end{array}\right.$,即B(1,1),
則AB的中點(diǎn)坐標(biāo)為(1,2),半徑R=1,
則對(duì)應(yīng)圓的方程為(x-1)2+(y-2)2=1,
故答案為:(x-1)2+(y-2)2=1,
點(diǎn)評(píng) 本題主要考查線性規(guī)劃的應(yīng)用以及三角形外接圓的計(jì)算,作出不等式組對(duì)應(yīng)的平面區(qū)域,利用數(shù)形結(jié)合是解決本題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ①③ | B. | ①④ | C. | ②③ | D. | ②④ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 射線 | B. | 橢圓 | C. | 雙曲線的一支 | D. | 拋物線 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $2-\sqrt{3}$ | B. | 0 | C. | -1 | D. | $-1-\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | $\sqrt{2}$ | C. | $\sqrt{3}$ | D. | $\sqrt{7}$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com