分析 根據(jù)y=f(x)為R上的偶函數(shù),且滿足f(x+4)=f(4-x),得出函數(shù)為周期函數(shù),周期是8,然后再利用函數(shù)的性質解答
解答 解:∵y=f(x)為R上的偶函數(shù),
∴f(-x)=f(x),
又f(x+4)=f(4-x),
∴f(x+8)=f[(4-(4+x)]=f(-x)=f(x),
∴y=f(x)的周期是8,
又f[2016+sin(α-2π)•sin(π+α)-cos2(-α)]=f[2016+sin2α-cos2α]=f(2015+2sin2α)=f(2016-$\frac{5}{9}$)=f(-$\frac{5}{9}$)=f($\frac{5}{9}$)=$\frac{5}{9}$,
故答案為:$\frac{5}{9}$.
點評 本題考查函數(shù)的周期性,結合函數(shù)的其他性質即可解得.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 命題“?x∈R.ex>0”的否定是“?x∈R,ex>0” | |
B. | 命題“若a=-1,則函數(shù)f(x)=ax2+2x-1只有一個零點”的逆命題是真命題 | |
C. | “x2+2x≥ax在x∈[1,2]上恒成立”?“對于x∈[1,2]有(x2+2x)min≥(ax)max” | |
D. | 命題“已知x,y∈R,若x+y≠3,則x≠2或y≠1”是真命題 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 1個 | B. | 2個 | C. | 3個 | D. | 4個 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 第一、三象限角 | B. | 第二、四象限角 | C. | 第二、三象限角 | D. | 第一、四象限角 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com