如圖,網(wǎng)格紙上小正方形的邊長為1,用粗線畫出了某多面體的三視圖,則該多面體最長的棱長為
 

考點:簡單空間圖形的三視圖
專題:計算題,空間位置關(guān)系與距離
分析:三視圖中長對正,高對齊,寬相等;由三視圖想象出直觀圖,一般需從俯視圖構(gòu)建直觀圖,該幾何體為四棱錐.
解答: 解:該幾何體為三棱錐,
其最長為棱長為
42+22+42
=6;
故答案為:6.
點評:三視圖中長對正,高對齊,寬相等;由三視圖想象出直觀圖,一般需從俯視圖構(gòu)建直觀圖,本題考查了學生的空間想象力,識圖能力及計算能力.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(x)=(x+1)lnx-2x
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)設h(x)=f′(x)+
1
ex
,若h(x)>k(k∈z)恒成立,求k的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

拋物線y=-x2焦點坐標是( 。
A、(0,-1)
B、(0,-
1
2
C、(0,-
1
4
D、(0,-
1
8

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知
a
=(1,2)
b
=(1,λ)分別確定實數(shù)λ的取值范圍,使得:
(1)
a
b
的夾角為90°;
(2)
a
b
的夾角為銳角;
(3)
a
b
的夾角為鈍角.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若實數(shù)x,y滿足
x-y+1≥0
x+y-1≥0
x≤3
則z=3x-y的最大值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知a>b>0,則下列不等式成立的是( 。
A、a2<b2
B、
1
a
1
b
C、|a|<|b|
D、2a>2b

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

將長為12米的鋼筋截成12段,做成底面為正方形的長方體水箱骨架,設水箱的高h,底面邊長x,水箱的表面積(各個面的面積之和)為S.
(1)將S表示成x的函數(shù);
(2)根據(jù)實際需要,底面邊長不小于0.25,不大于1.25,當?shù)酌孢呴L為多少時,這個水箱表面積最小值,并求出最小面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)是定義在R上的偶函數(shù),且在區(qū)間[0,+∞)上單調(diào)遞增,若實數(shù)a滿足f(log2a)+f(log
1
2
a)≤2f(1),則a的取值范圍是( 。
A、[
1
2
2]
B、[1,2]
C、(0,
1
2
)
D、(0,2]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
x2,x∈[0,+∞)
x3+a2-3a+2,x∈(-∞,0)
在區(qū)間(-∞,+∞)上是增函數(shù),則常數(shù)a的取值范圍是( 。
A、(1,2)
B、(-∞,1]∪[2,+∞)
C、[1,2]
D、(-∞,1)∪(2,+∞)

查看答案和解析>>

同步練習冊答案