6.(1)將下列極坐標(biāo)方程化為直角坐標(biāo)方程:ρ(2cosθ+5sinθ)-4=0;
(2)將下列參數(shù)方程化為普通方程:$\left\{{\begin{array}{l}{x=5cosφ}\\{y=4sinφ}\end{array}}\right.$(φ為參數(shù)).

分析 (1)由極坐標(biāo)方程:ρ(2cosθ+5sinθ)-4=0,利用互化公式可得直角坐標(biāo)方程.
(2)利用cos2φ+sin2φ=1,即可化為普通方程.

解答 解:(1)由極坐標(biāo)方程:ρ(2cosθ+5sinθ)-4=0,可得直角坐標(biāo)方程:2x+5y-4=0.
(2)參數(shù)方程:$\left\{{\begin{array}{l}{x=5cosφ}\\{y=4sinφ}\end{array}}\right.$(φ為參數(shù)),可得cos2φ+sin2φ=$\frac{{x}^{2}}{25}+\frac{{y}^{2}}{16}$=1,

點評 本題考查了極坐標(biāo)與直角坐標(biāo)方程互化、參數(shù)方程化為普通方程、三角函數(shù)基本關(guān)系式,考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.在直角坐標(biāo)系xOy中,直線C1的參數(shù)方程為$\left\{{\begin{array}{l}{x=1+t}\\{y=2+t}\end{array}}\right.(t$為參數(shù)),以該直角坐標(biāo)系的原點O為極點,x軸的非負(fù)半軸為極軸的極坐標(biāo)系下,圓C2的方程為$ρ=-2cosθ+2\sqrt{3}sinθ$.
(Ⅰ)求直線C1、圓C2的普通方程;
(Ⅱ)設(shè)直線C1和圓C2的交點為A、B,求弦AB的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知圓C經(jīng)過兩點A(1,1),B(-2,-2),且在y軸上截得的弦長為4$\sqrt{2}$,半徑小于4.
(1)求圓C的方程;
(2)若圓C與直線x-y+a=0交于A、B兩點,且OA⊥OB(O是坐標(biāo)原點),求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.在平面直角坐標(biāo)系xOy中,點P的直角坐標(biāo)為(1,-$\sqrt{3}$),若以原點O為極點,x軸正半軸為極軸建立極坐標(biāo)系,則點P的極坐標(biāo)可以是$(2,\frac{5π}{3})$.(θ∈((0,2π))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.若關(guān)于x的方程22x+a•2x+a+1=0只有一個實根,則實數(shù)a的取值范圍為(-∞,-1]$∪\{2-2\sqrt{2}\}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.自然數(shù)k滿足如下性質(zhì):在1,2,…,2012中取出k個不同的數(shù),使其中任意兩個數(shù)之和不被這兩個數(shù)之差整除,求k的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.在一個港口,相鄰兩次高潮發(fā)生的時間相距12h,低潮時水深為9m,高潮時水深為15m.每天潮漲潮落時,該港口水的深度y(m)關(guān)于時間t(h)的函數(shù)圖象可以近似地看成函數(shù)y=Asin(ωt+φ)+k的圖象,其中0≤t≤24,且t=3時漲潮到一次高潮,則該函數(shù)的解析式可以是(  )
A.$y=3sin\frac{π}{6}t+12$B.$y=-3sin\frac{π}{6}t+12$C.$y=3sin\frac{π}{12}t+12$D.$y=3cos\frac{π}{12}t+12$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.設(shè)f(x)=aex+$\frac{1}{a{e}^{x}}$+b(a>0).
(1)求f(x)在[0,+∞)上的最小值;
(2)設(shè)曲線y=f(x)在點(2,f(2))的切線方程為3x-2y=0,求a、b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知函數(shù)f(x)=lnx
(Ⅰ)求函數(shù)$F(x)=\frac{f(x)}{x}+\frac{1}{2}$的最大值.
(Ⅱ)證明:$\frac{f(x)}{x}+\frac{1}{2}<x-f(x)$;
(Ⅲ)若不等式mf(x)≥a+x對所有的$m∈[{0,\frac{3}{2}}],x∈[{1,{e^2}}]$都成立,求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案