14.在平面直角坐標系xOy中,點P的直角坐標為(1,-$\sqrt{3}$),若以原點O為極點,x軸正半軸為極軸建立極坐標系,則點P的極坐標可以是$(2,\frac{5π}{3})$.(θ∈((0,2π))

分析 利用$ρ=\sqrt{{x}^{2}+{y}^{2}}$,tanθ=$\frac{y}{x}$即可得出.

解答 解:$ρ=\sqrt{{1}^{2}+(-\sqrt{3})^{2}}$=2,tanθ=$-\sqrt{3}$,且點P在第四象限,∴θ=$\frac{5π}{3}$.
故點P的極坐標為$(2,\frac{5π}{3})$.
故答案為:$(2,\frac{5π}{3})$.

點評 本題考查了極坐標與直角坐標方程互化,考查了推理能力與計算能力,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

4.設D=$|\begin{array}{l}{1}&{-1}&{0}&{2}\\{1}&{0}&{4}&{1}\\{2}&{0}&{3}&{0}\\{1}&{2}&{3}&{4}\end{array}|$,求A41+A42+A43+A44,其中A4j(j=1,2,3,4)為元素a4j的代數(shù)余子式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.已知函數(shù)f(x)=2log3(x-a)-1og3(x+3).
(1)當a=3時,解不等式f(x)≥0;
(2)當x∈(-3,+∞)時,f(x)≥0恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.設曲線x2+y2-2x+4y-4=0關于直線x-2ay+11=0對稱,則直線x-2ay+11=0的傾斜角為( 。
A.arctan(-6)B.arctan(-$\frac{1}{6}$)C.π-arctan6D.π-arctan$\frac{1}{6}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

9.已知直線的極坐標方程為ρsin(θ+$\frac{π}{4}$)=$\frac{\sqrt{2}}{2}$,求點A(4,$\frac{7π}{4}$)到這條直線的距離$\frac{\sqrt{2}}{2}$..

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.在直角坐標系xOy中,圓C1:(x-3)2+y2=9,以原點O為極點,x軸正半軸為極軸建立極坐標系,圓C2的圓心的極坐標為($\sqrt{2}$,$\frac{π}{4}}$),半徑為1.
(1)求圓C1的極坐標方程;
(2)設圓C1與圓C2交于A,B兩點,求|AB|.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.(1)將下列極坐標方程化為直角坐標方程:ρ(2cosθ+5sinθ)-4=0;
(2)將下列參數(shù)方程化為普通方程:$\left\{{\begin{array}{l}{x=5cosφ}\\{y=4sinφ}\end{array}}\right.$(φ為參數(shù)).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.已知實數(shù)x,y滿足x+y-3=0,則$\sqrt{{{(x-2)}^2}+{{(y+1)}^2}}$的最小值是( 。
A.$\sqrt{2}$B.2C.1D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.已知f(x)=xlnx-ax,g(x)=-x2-2.
(Ⅰ)對一切x∈(0,+∞),f(x)≥g(x)恒成立,求實數(shù)a的取值范圍;
(Ⅱ)當a=-1時,求函數(shù)f(x)在區(qū)間[m,m+3](m>0)上的最值;
(Ⅲ)證明:對一切x∈(0,+∞),都有$lnx+1>\frac{1}{{{{e}^{x+1}}}}-\frac{2}{{{{e}^2}x}}$成立.

查看答案和解析>>

同步練習冊答案