分析 (1)通過證明△AME∽△ONE,即可推出結(jié)果.
(2)利用(1)的結(jié)論,設(shè)OE=x,求解x,然后在直角三角形中求解即可.
解答 (1)證明:∵M、N分別是AF、AB的中點.
∴∠AME=∠ONE=90°,又∵∠E=∠E,∴△AME∽△ONE,
∴$\frac{AE}{OE}=\frac{ME}{NE}$,∴OE•ME=NE•AE.
(2)設(shè)OE=x,(x>0),
∵BE=$\frac{1}{2}AB$=$\sqrt{3}$,∴NE=2$\sqrt{3}$,AE=3$\sqrt{3}$,
又∵OM=$\frac{1}{2}$,∴x$•(x+\frac{1}{2})$=2$\sqrt{3}•3\sqrt{3}$,即:(x-4)(2x+9)=0,
∵x>0,∴x=4,即OE=4,則在Rt△ONE中,cos∠E=$\frac{NE}{OE}$=$\frac{2\sqrt{3}}{4}$=$\frac{\sqrt{3}}{2}$
∴∠E=30°.
點評 本題考查三角形相似的判斷與應(yīng)用,直角三角形的解法,考查計算能力.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 結(jié)論正確 | B. | 大前提不正確 | C. | 小前提不正確 | D. | 全不正確 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | 3 | C. | 5 | D. | 7 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | M+N=8 | B. | M+N=10 | C. | M-N=8 | D. | M-N=10 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{4}$ | B. | $\frac{1}{3}$ | C. | $\frac{1}{2}$ | D. | $\frac{2}{3}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com